Lattice Embeddings of Planar Point Sets
Let M be a finite non-collinear set of points in the Euclidean plane, with the squared distance between each pair of points integral. Considering the points as lying in the complex plane, there is at most one positive square-free integer D , called the “characteristic” of M , such that a congruent c...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2016-10, Vol.56 (3), p.693-710 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 710 |
---|---|
container_issue | 3 |
container_start_page | 693 |
container_title | Discrete & computational geometry |
container_volume | 56 |
creator | Knopf, Michael Milzman, Jesse Smith, Derek Zhu, Dantong Zirlin, Dara |
description | Let
M
be a finite non-collinear set of points in the Euclidean plane, with the squared distance between each pair of points integral. Considering the points as lying in the complex plane, there is at most one positive square-free integer
D
, called the “characteristic” of
M
, such that a congruent copy of
M
embeds in
Q
(
-
D
)
. We generalize the work of Yiu and Fricke on embedding point sets in
Z
2
by providing conditions that characterize when
M
embeds in the lattice corresponding to
O
-
D
, the ring of integers in
Q
(
-
D
)
. In particular, we show that if the square of every ideal in
O
-
D
is principal and the distance between at least one pair of points in
M
is integral, then
M
embeds in
O
-
D
. Moreover, if
M
is primitive, so that the squared distances between pairs of points are relatively prime, and
O
-
D
is a principal ideal domain, then
M
embeds in
O
-
D
. |
doi_str_mv | 10.1007/s00454-016-9812-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845789656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4167900221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-518af952039ce2eb96ebbce38d643333ada3b473f8fc37436a150f847fe76ef83</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2AC91E834spbQqFCyo65DJ3JQp7UxNpgv_vSnjQgTv5m6-czh8CF1Tck8J0Q-ZECEFJlRhayjD4gRNqOAMEyHEKZoQqi2WXKtzdJHzhhTcEjNBt0s_DG2Aar6roWnabp2rPlarre98qlZ92w3VGwz5Ep1Fv81w9fOn6GMxf5894-Xr08vscYkDF3bAkhofrWSE2wAMaqugrgNw0yjBy_nG81poHk0MXAuuPJUkGqEjaAXR8Cm6G3v3qf88QB7crs0BtmUP9IfsqBFSG6ukKujNH3TTH1JX1hWKSsuo1axQdKRC6nNOEN0-tTufvhwl7qjOjepcUeeO6pwoGTZmcmG7NaRfzf-GvgEbHG56</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1815921972</pqid></control><display><type>article</type><title>Lattice Embeddings of Planar Point Sets</title><source>SpringerLink Journals - AutoHoldings</source><creator>Knopf, Michael ; Milzman, Jesse ; Smith, Derek ; Zhu, Dantong ; Zirlin, Dara</creator><creatorcontrib>Knopf, Michael ; Milzman, Jesse ; Smith, Derek ; Zhu, Dantong ; Zirlin, Dara</creatorcontrib><description>Let
M
be a finite non-collinear set of points in the Euclidean plane, with the squared distance between each pair of points integral. Considering the points as lying in the complex plane, there is at most one positive square-free integer
D
, called the “characteristic” of
M
, such that a congruent copy of
M
embeds in
Q
(
-
D
)
. We generalize the work of Yiu and Fricke on embedding point sets in
Z
2
by providing conditions that characterize when
M
embeds in the lattice corresponding to
O
-
D
, the ring of integers in
Q
(
-
D
)
. In particular, we show that if the square of every ideal in
O
-
D
is principal and the distance between at least one pair of points in
M
is integral, then
M
embeds in
O
-
D
. Moreover, if
M
is primitive, so that the squared distances between pairs of points are relatively prime, and
O
-
D
is a principal ideal domain, then
M
embeds in
O
-
D
.</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-016-9812-4</identifier><identifier>CODEN: DCGEER</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Computational geometry ; Computational Mathematics and Numerical Analysis ; Euclidean geometry ; Integers ; Integrals ; Lattices ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Planes ; Texts</subject><ispartof>Discrete & computational geometry, 2016-10, Vol.56 (3), p.693-710</ispartof><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-518af952039ce2eb96ebbce38d643333ada3b473f8fc37436a150f847fe76ef83</citedby><cites>FETCH-LOGICAL-c349t-518af952039ce2eb96ebbce38d643333ada3b473f8fc37436a150f847fe76ef83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00454-016-9812-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00454-016-9812-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Knopf, Michael</creatorcontrib><creatorcontrib>Milzman, Jesse</creatorcontrib><creatorcontrib>Smith, Derek</creatorcontrib><creatorcontrib>Zhu, Dantong</creatorcontrib><creatorcontrib>Zirlin, Dara</creatorcontrib><title>Lattice Embeddings of Planar Point Sets</title><title>Discrete & computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>Let
M
be a finite non-collinear set of points in the Euclidean plane, with the squared distance between each pair of points integral. Considering the points as lying in the complex plane, there is at most one positive square-free integer
D
, called the “characteristic” of
M
, such that a congruent copy of
M
embeds in
Q
(
-
D
)
. We generalize the work of Yiu and Fricke on embedding point sets in
Z
2
by providing conditions that characterize when
M
embeds in the lattice corresponding to
O
-
D
, the ring of integers in
Q
(
-
D
)
. In particular, we show that if the square of every ideal in
O
-
D
is principal and the distance between at least one pair of points in
M
is integral, then
M
embeds in
O
-
D
. Moreover, if
M
is primitive, so that the squared distances between pairs of points are relatively prime, and
O
-
D
is a principal ideal domain, then
M
embeds in
O
-
D
.</description><subject>Combinatorics</subject><subject>Computational geometry</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Euclidean geometry</subject><subject>Integers</subject><subject>Integrals</subject><subject>Lattices</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Planes</subject><subject>Texts</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN2AC91E834spbQqFCyo65DJ3JQp7UxNpgv_vSnjQgTv5m6-czh8CF1Tck8J0Q-ZECEFJlRhayjD4gRNqOAMEyHEKZoQqi2WXKtzdJHzhhTcEjNBt0s_DG2Aar6roWnabp2rPlarre98qlZ92w3VGwz5Ep1Fv81w9fOn6GMxf5894-Xr08vscYkDF3bAkhofrWSE2wAMaqugrgNw0yjBy_nG81poHk0MXAuuPJUkGqEjaAXR8Cm6G3v3qf88QB7crs0BtmUP9IfsqBFSG6ukKujNH3TTH1JX1hWKSsuo1axQdKRC6nNOEN0-tTufvhwl7qjOjepcUeeO6pwoGTZmcmG7NaRfzf-GvgEbHG56</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Knopf, Michael</creator><creator>Milzman, Jesse</creator><creator>Smith, Derek</creator><creator>Zhu, Dantong</creator><creator>Zirlin, Dara</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20161001</creationdate><title>Lattice Embeddings of Planar Point Sets</title><author>Knopf, Michael ; Milzman, Jesse ; Smith, Derek ; Zhu, Dantong ; Zirlin, Dara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-518af952039ce2eb96ebbce38d643333ada3b473f8fc37436a150f847fe76ef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Combinatorics</topic><topic>Computational geometry</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Euclidean geometry</topic><topic>Integers</topic><topic>Integrals</topic><topic>Lattices</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Planes</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knopf, Michael</creatorcontrib><creatorcontrib>Milzman, Jesse</creatorcontrib><creatorcontrib>Smith, Derek</creatorcontrib><creatorcontrib>Zhu, Dantong</creatorcontrib><creatorcontrib>Zirlin, Dara</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Discrete & computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knopf, Michael</au><au>Milzman, Jesse</au><au>Smith, Derek</au><au>Zhu, Dantong</au><au>Zirlin, Dara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice Embeddings of Planar Point Sets</atitle><jtitle>Discrete & computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>56</volume><issue>3</issue><spage>693</spage><epage>710</epage><pages>693-710</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><coden>DCGEER</coden><abstract>Let
M
be a finite non-collinear set of points in the Euclidean plane, with the squared distance between each pair of points integral. Considering the points as lying in the complex plane, there is at most one positive square-free integer
D
, called the “characteristic” of
M
, such that a congruent copy of
M
embeds in
Q
(
-
D
)
. We generalize the work of Yiu and Fricke on embedding point sets in
Z
2
by providing conditions that characterize when
M
embeds in the lattice corresponding to
O
-
D
, the ring of integers in
Q
(
-
D
)
. In particular, we show that if the square of every ideal in
O
-
D
is principal and the distance between at least one pair of points in
M
is integral, then
M
embeds in
O
-
D
. Moreover, if
M
is primitive, so that the squared distances between pairs of points are relatively prime, and
O
-
D
is a principal ideal domain, then
M
embeds in
O
-
D
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00454-016-9812-4</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0179-5376 |
ispartof | Discrete & computational geometry, 2016-10, Vol.56 (3), p.693-710 |
issn | 0179-5376 1432-0444 |
language | eng |
recordid | cdi_proquest_miscellaneous_1845789656 |
source | SpringerLink Journals - AutoHoldings |
subjects | Combinatorics Computational geometry Computational Mathematics and Numerical Analysis Euclidean geometry Integers Integrals Lattices Mathematical analysis Mathematics Mathematics and Statistics Planes Texts |
title | Lattice Embeddings of Planar Point Sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A26%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20Embeddings%20of%20Planar%20Point%20Sets&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Knopf,%20Michael&rft.date=2016-10-01&rft.volume=56&rft.issue=3&rft.spage=693&rft.epage=710&rft.pages=693-710&rft.issn=0179-5376&rft.eissn=1432-0444&rft.coden=DCGEER&rft_id=info:doi/10.1007/s00454-016-9812-4&rft_dat=%3Cproquest_cross%3E4167900221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1815921972&rft_id=info:pmid/&rfr_iscdi=true |