Upfront boost Gamma Knife "leading-edge" radiosurgery to FLAIR MRI-defined tumor migration pathways in 174 patients with glioblastoma multiforme: a 15-year assessment of a novel therapy
OBJECTIVE Glioblastoma multiforme (GBM) is composed of cells that migrate through the brain along predictable white matter pathways. Targeting white matter pathways adjacent to, and leading away from, the original contrast-enhancing tumor site (termed leading-edge radiosurgery [LERS]) with single-fr...
Gespeichert in:
Veröffentlicht in: | Journal of neurosurgery 2016-12, Vol.125 (Suppl 1), p.40-49 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 49 |
---|---|
container_issue | Suppl 1 |
container_start_page | 40 |
container_title | Journal of neurosurgery |
container_volume | 125 |
creator | Duma, Christopher M Kim, Brian S Chen, Peter V Plunkett, Marianne E Mackintosh, Ralph Mathews, Marlon S Casserly, Ryan M Mendez, Gustavo A Furman, Daniel J Smith, Garrett Oh, Nathan Caraway, Chad A Sanathara, Ami R Dillman, Robert O Riley, Azzurra-Sky Weiland, David Stemler, Lian Cannell, Ruslana Abrams, Daniela Alexandru Smith, Alexa Owen, Christopher M Eisenberg, Burton Brant-Zawadzki, Michael |
description | OBJECTIVE Glioblastoma multiforme (GBM) is composed of cells that migrate through the brain along predictable white matter pathways. Targeting white matter pathways adjacent to, and leading away from, the original contrast-enhancing tumor site (termed leading-edge radiosurgery [LERS]) with single-fraction stereotactic radiosurgery as a boost to standard therapy could limit the spread of glioma cells and improve clinical outcomes. METHODS Between December 2000 and May 2016, after an initial diagnosis of GBM and prior to or during standard radiation therapy and carmustine or temozolomide chemotherapy, 174 patients treated with radiosurgery to the leading edge (LE) of tumor cell migration were reviewed. The LE was defined as a region outside the contrast-enhancing tumor nidus, defined by FLAIR MRI. The median age of patients was 59 years (range 22-87 years). Patients underwent LERS a median of 18 days from original diagnosis. The median target volume of 48.5 cm
(range 2.5-220.0 cm
) of LE tissue was targeted using a median dose of 8 Gy (range 6-14 Gy) at the 50% isodose line. RESULTS The median overall survival was 23 months (mean 43 months) from diagnosis. The 2-, 3-, 5-, 7-, and 10-year actual overall survival rates after LERS were 39%, 26%, 16%, 10%, and 4%, respectively. Nine percent of patients developed treatment-related imaging-documented changes due to LERS. Nineteen percent of patients were hospitalized for management of edema, 22% for resection of a tumor cyst or new tumor bulk, and 2% for shunting to treat hydrocephalus throughout the course of their disease. Of the patients still alive, Karnofsky Performance Scale scores remained stable in 90% of patients and decreased by 1-3 grades in 10% due to symptomatic treatment-related imaging changes. CONCLUSIONS LERS is a safe and effective upfront adjunctive therapy for patients with newly diagnosed GBM. Limitations of this study include a single-center experience and single-institution determination of the LE tumor target. Use of a leading-edge calculation algorithm will be described to achieve a consistent approach to defining the LE target for general use. A multicenter trial will further elucidate its value in the treatment of GBM. |
doi_str_mv | 10.3171/2016.7.GKS161460 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845256176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1845256176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-288638a869379bfaa86b951984605860fff5c0bd7456cce387c64ff9e85291943</originalsourceid><addsrcrecordid>eNo9UU1v1DAUtBCIbgt3TsjqiUsWO078wa2q6LLqIqRCz5GTPGeN4jjYDlV-Gv-uXrX09N48zcyTZhD6QMmWUUE_l4Tyrdjubn9STitOXqENVYwVhCv2Gm0IKcuCEVmfofMYf5PMrnj5Fp2VQhFGldigf_ezCX5KuPU-JrzTzml8O1kD-HIE3dtpKKAf4BKHDHxcwgBhxcnjm8PV_g5_v9sXPRg7QY_T4nzAzg5BJ-snPOt0fNBrxHbCVFQnbGFKET_YdMTDaH076ph8_uiWMVnjg4MvWGNaFyvogHWMEKPLGuxNvk_-L4w4HSHoeX2H3hg9Rnj_PC_Q_c3XX9ffisOP3f766lB0rKKpKKXkTGqZExGqNTpvraqpkjmuWnJijKk70vaiqnnXAZOi45UxCmRdKqoqdoE-PfnOwf9ZIKbG2djBOOoJ_BIbKqu6rDkVPFPJE7ULPsYAppmDdTqsDSXNqbDmVFgjmpfCsuTjs_vSOuhfBP8bYo_4NZJW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845256176</pqid></control><display><type>article</type><title>Upfront boost Gamma Knife "leading-edge" radiosurgery to FLAIR MRI-defined tumor migration pathways in 174 patients with glioblastoma multiforme: a 15-year assessment of a novel therapy</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Duma, Christopher M ; Kim, Brian S ; Chen, Peter V ; Plunkett, Marianne E ; Mackintosh, Ralph ; Mathews, Marlon S ; Casserly, Ryan M ; Mendez, Gustavo A ; Furman, Daniel J ; Smith, Garrett ; Oh, Nathan ; Caraway, Chad A ; Sanathara, Ami R ; Dillman, Robert O ; Riley, Azzurra-Sky ; Weiland, David ; Stemler, Lian ; Cannell, Ruslana ; Abrams, Daniela Alexandru ; Smith, Alexa ; Owen, Christopher M ; Eisenberg, Burton ; Brant-Zawadzki, Michael</creator><creatorcontrib>Duma, Christopher M ; Kim, Brian S ; Chen, Peter V ; Plunkett, Marianne E ; Mackintosh, Ralph ; Mathews, Marlon S ; Casserly, Ryan M ; Mendez, Gustavo A ; Furman, Daniel J ; Smith, Garrett ; Oh, Nathan ; Caraway, Chad A ; Sanathara, Ami R ; Dillman, Robert O ; Riley, Azzurra-Sky ; Weiland, David ; Stemler, Lian ; Cannell, Ruslana ; Abrams, Daniela Alexandru ; Smith, Alexa ; Owen, Christopher M ; Eisenberg, Burton ; Brant-Zawadzki, Michael</creatorcontrib><description>OBJECTIVE Glioblastoma multiforme (GBM) is composed of cells that migrate through the brain along predictable white matter pathways. Targeting white matter pathways adjacent to, and leading away from, the original contrast-enhancing tumor site (termed leading-edge radiosurgery [LERS]) with single-fraction stereotactic radiosurgery as a boost to standard therapy could limit the spread of glioma cells and improve clinical outcomes. METHODS Between December 2000 and May 2016, after an initial diagnosis of GBM and prior to or during standard radiation therapy and carmustine or temozolomide chemotherapy, 174 patients treated with radiosurgery to the leading edge (LE) of tumor cell migration were reviewed. The LE was defined as a region outside the contrast-enhancing tumor nidus, defined by FLAIR MRI. The median age of patients was 59 years (range 22-87 years). Patients underwent LERS a median of 18 days from original diagnosis. The median target volume of 48.5 cm
(range 2.5-220.0 cm
) of LE tissue was targeted using a median dose of 8 Gy (range 6-14 Gy) at the 50% isodose line. RESULTS The median overall survival was 23 months (mean 43 months) from diagnosis. The 2-, 3-, 5-, 7-, and 10-year actual overall survival rates after LERS were 39%, 26%, 16%, 10%, and 4%, respectively. Nine percent of patients developed treatment-related imaging-documented changes due to LERS. Nineteen percent of patients were hospitalized for management of edema, 22% for resection of a tumor cyst or new tumor bulk, and 2% for shunting to treat hydrocephalus throughout the course of their disease. Of the patients still alive, Karnofsky Performance Scale scores remained stable in 90% of patients and decreased by 1-3 grades in 10% due to symptomatic treatment-related imaging changes. CONCLUSIONS LERS is a safe and effective upfront adjunctive therapy for patients with newly diagnosed GBM. Limitations of this study include a single-center experience and single-institution determination of the LE tumor target. Use of a leading-edge calculation algorithm will be described to achieve a consistent approach to defining the LE target for general use. A multicenter trial will further elucidate its value in the treatment of GBM.</description><identifier>ISSN: 0022-3085</identifier><identifier>EISSN: 1933-0693</identifier><identifier>DOI: 10.3171/2016.7.GKS161460</identifier><identifier>PMID: 27903197</identifier><language>eng</language><publisher>United States</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Brain Neoplasms - diagnostic imaging ; Brain Neoplasms - pathology ; Brain Neoplasms - radiotherapy ; Cell Movement ; Follow-Up Studies ; Glioblastoma - diagnostic imaging ; Glioblastoma - pathology ; Glioblastoma - radiotherapy ; Humans ; Magnetic Resonance Imaging - methods ; Middle Aged ; Radiosurgery - methods ; Retrospective Studies ; Time Factors ; Treatment Outcome ; Young Adult</subject><ispartof>Journal of neurosurgery, 2016-12, Vol.125 (Suppl 1), p.40-49</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-288638a869379bfaa86b951984605860fff5c0bd7456cce387c64ff9e85291943</citedby><cites>FETCH-LOGICAL-c341t-288638a869379bfaa86b951984605860fff5c0bd7456cce387c64ff9e85291943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27903197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duma, Christopher M</creatorcontrib><creatorcontrib>Kim, Brian S</creatorcontrib><creatorcontrib>Chen, Peter V</creatorcontrib><creatorcontrib>Plunkett, Marianne E</creatorcontrib><creatorcontrib>Mackintosh, Ralph</creatorcontrib><creatorcontrib>Mathews, Marlon S</creatorcontrib><creatorcontrib>Casserly, Ryan M</creatorcontrib><creatorcontrib>Mendez, Gustavo A</creatorcontrib><creatorcontrib>Furman, Daniel J</creatorcontrib><creatorcontrib>Smith, Garrett</creatorcontrib><creatorcontrib>Oh, Nathan</creatorcontrib><creatorcontrib>Caraway, Chad A</creatorcontrib><creatorcontrib>Sanathara, Ami R</creatorcontrib><creatorcontrib>Dillman, Robert O</creatorcontrib><creatorcontrib>Riley, Azzurra-Sky</creatorcontrib><creatorcontrib>Weiland, David</creatorcontrib><creatorcontrib>Stemler, Lian</creatorcontrib><creatorcontrib>Cannell, Ruslana</creatorcontrib><creatorcontrib>Abrams, Daniela Alexandru</creatorcontrib><creatorcontrib>Smith, Alexa</creatorcontrib><creatorcontrib>Owen, Christopher M</creatorcontrib><creatorcontrib>Eisenberg, Burton</creatorcontrib><creatorcontrib>Brant-Zawadzki, Michael</creatorcontrib><title>Upfront boost Gamma Knife "leading-edge" radiosurgery to FLAIR MRI-defined tumor migration pathways in 174 patients with glioblastoma multiforme: a 15-year assessment of a novel therapy</title><title>Journal of neurosurgery</title><addtitle>J Neurosurg</addtitle><description>OBJECTIVE Glioblastoma multiforme (GBM) is composed of cells that migrate through the brain along predictable white matter pathways. Targeting white matter pathways adjacent to, and leading away from, the original contrast-enhancing tumor site (termed leading-edge radiosurgery [LERS]) with single-fraction stereotactic radiosurgery as a boost to standard therapy could limit the spread of glioma cells and improve clinical outcomes. METHODS Between December 2000 and May 2016, after an initial diagnosis of GBM and prior to or during standard radiation therapy and carmustine or temozolomide chemotherapy, 174 patients treated with radiosurgery to the leading edge (LE) of tumor cell migration were reviewed. The LE was defined as a region outside the contrast-enhancing tumor nidus, defined by FLAIR MRI. The median age of patients was 59 years (range 22-87 years). Patients underwent LERS a median of 18 days from original diagnosis. The median target volume of 48.5 cm
(range 2.5-220.0 cm
) of LE tissue was targeted using a median dose of 8 Gy (range 6-14 Gy) at the 50% isodose line. RESULTS The median overall survival was 23 months (mean 43 months) from diagnosis. The 2-, 3-, 5-, 7-, and 10-year actual overall survival rates after LERS were 39%, 26%, 16%, 10%, and 4%, respectively. Nine percent of patients developed treatment-related imaging-documented changes due to LERS. Nineteen percent of patients were hospitalized for management of edema, 22% for resection of a tumor cyst or new tumor bulk, and 2% for shunting to treat hydrocephalus throughout the course of their disease. Of the patients still alive, Karnofsky Performance Scale scores remained stable in 90% of patients and decreased by 1-3 grades in 10% due to symptomatic treatment-related imaging changes. CONCLUSIONS LERS is a safe and effective upfront adjunctive therapy for patients with newly diagnosed GBM. Limitations of this study include a single-center experience and single-institution determination of the LE tumor target. Use of a leading-edge calculation algorithm will be described to achieve a consistent approach to defining the LE target for general use. A multicenter trial will further elucidate its value in the treatment of GBM.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Brain Neoplasms - pathology</subject><subject>Brain Neoplasms - radiotherapy</subject><subject>Cell Movement</subject><subject>Follow-Up Studies</subject><subject>Glioblastoma - diagnostic imaging</subject><subject>Glioblastoma - pathology</subject><subject>Glioblastoma - radiotherapy</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Middle Aged</subject><subject>Radiosurgery - methods</subject><subject>Retrospective Studies</subject><subject>Time Factors</subject><subject>Treatment Outcome</subject><subject>Young Adult</subject><issn>0022-3085</issn><issn>1933-0693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9UU1v1DAUtBCIbgt3TsjqiUsWO078wa2q6LLqIqRCz5GTPGeN4jjYDlV-Gv-uXrX09N48zcyTZhD6QMmWUUE_l4Tyrdjubn9STitOXqENVYwVhCv2Gm0IKcuCEVmfofMYf5PMrnj5Fp2VQhFGldigf_ezCX5KuPU-JrzTzml8O1kD-HIE3dtpKKAf4BKHDHxcwgBhxcnjm8PV_g5_v9sXPRg7QY_T4nzAzg5BJ-snPOt0fNBrxHbCVFQnbGFKET_YdMTDaH076ph8_uiWMVnjg4MvWGNaFyvogHWMEKPLGuxNvk_-L4w4HSHoeX2H3hg9Rnj_PC_Q_c3XX9ffisOP3f766lB0rKKpKKXkTGqZExGqNTpvraqpkjmuWnJijKk70vaiqnnXAZOi45UxCmRdKqoqdoE-PfnOwf9ZIKbG2djBOOoJ_BIbKqu6rDkVPFPJE7ULPsYAppmDdTqsDSXNqbDmVFgjmpfCsuTjs_vSOuhfBP8bYo_4NZJW</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Duma, Christopher M</creator><creator>Kim, Brian S</creator><creator>Chen, Peter V</creator><creator>Plunkett, Marianne E</creator><creator>Mackintosh, Ralph</creator><creator>Mathews, Marlon S</creator><creator>Casserly, Ryan M</creator><creator>Mendez, Gustavo A</creator><creator>Furman, Daniel J</creator><creator>Smith, Garrett</creator><creator>Oh, Nathan</creator><creator>Caraway, Chad A</creator><creator>Sanathara, Ami R</creator><creator>Dillman, Robert O</creator><creator>Riley, Azzurra-Sky</creator><creator>Weiland, David</creator><creator>Stemler, Lian</creator><creator>Cannell, Ruslana</creator><creator>Abrams, Daniela Alexandru</creator><creator>Smith, Alexa</creator><creator>Owen, Christopher M</creator><creator>Eisenberg, Burton</creator><creator>Brant-Zawadzki, Michael</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201612</creationdate><title>Upfront boost Gamma Knife "leading-edge" radiosurgery to FLAIR MRI-defined tumor migration pathways in 174 patients with glioblastoma multiforme: a 15-year assessment of a novel therapy</title><author>Duma, Christopher M ; Kim, Brian S ; Chen, Peter V ; Plunkett, Marianne E ; Mackintosh, Ralph ; Mathews, Marlon S ; Casserly, Ryan M ; Mendez, Gustavo A ; Furman, Daniel J ; Smith, Garrett ; Oh, Nathan ; Caraway, Chad A ; Sanathara, Ami R ; Dillman, Robert O ; Riley, Azzurra-Sky ; Weiland, David ; Stemler, Lian ; Cannell, Ruslana ; Abrams, Daniela Alexandru ; Smith, Alexa ; Owen, Christopher M ; Eisenberg, Burton ; Brant-Zawadzki, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-288638a869379bfaa86b951984605860fff5c0bd7456cce387c64ff9e85291943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Brain Neoplasms - pathology</topic><topic>Brain Neoplasms - radiotherapy</topic><topic>Cell Movement</topic><topic>Follow-Up Studies</topic><topic>Glioblastoma - diagnostic imaging</topic><topic>Glioblastoma - pathology</topic><topic>Glioblastoma - radiotherapy</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Middle Aged</topic><topic>Radiosurgery - methods</topic><topic>Retrospective Studies</topic><topic>Time Factors</topic><topic>Treatment Outcome</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duma, Christopher M</creatorcontrib><creatorcontrib>Kim, Brian S</creatorcontrib><creatorcontrib>Chen, Peter V</creatorcontrib><creatorcontrib>Plunkett, Marianne E</creatorcontrib><creatorcontrib>Mackintosh, Ralph</creatorcontrib><creatorcontrib>Mathews, Marlon S</creatorcontrib><creatorcontrib>Casserly, Ryan M</creatorcontrib><creatorcontrib>Mendez, Gustavo A</creatorcontrib><creatorcontrib>Furman, Daniel J</creatorcontrib><creatorcontrib>Smith, Garrett</creatorcontrib><creatorcontrib>Oh, Nathan</creatorcontrib><creatorcontrib>Caraway, Chad A</creatorcontrib><creatorcontrib>Sanathara, Ami R</creatorcontrib><creatorcontrib>Dillman, Robert O</creatorcontrib><creatorcontrib>Riley, Azzurra-Sky</creatorcontrib><creatorcontrib>Weiland, David</creatorcontrib><creatorcontrib>Stemler, Lian</creatorcontrib><creatorcontrib>Cannell, Ruslana</creatorcontrib><creatorcontrib>Abrams, Daniela Alexandru</creatorcontrib><creatorcontrib>Smith, Alexa</creatorcontrib><creatorcontrib>Owen, Christopher M</creatorcontrib><creatorcontrib>Eisenberg, Burton</creatorcontrib><creatorcontrib>Brant-Zawadzki, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurosurgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duma, Christopher M</au><au>Kim, Brian S</au><au>Chen, Peter V</au><au>Plunkett, Marianne E</au><au>Mackintosh, Ralph</au><au>Mathews, Marlon S</au><au>Casserly, Ryan M</au><au>Mendez, Gustavo A</au><au>Furman, Daniel J</au><au>Smith, Garrett</au><au>Oh, Nathan</au><au>Caraway, Chad A</au><au>Sanathara, Ami R</au><au>Dillman, Robert O</au><au>Riley, Azzurra-Sky</au><au>Weiland, David</au><au>Stemler, Lian</au><au>Cannell, Ruslana</au><au>Abrams, Daniela Alexandru</au><au>Smith, Alexa</au><au>Owen, Christopher M</au><au>Eisenberg, Burton</au><au>Brant-Zawadzki, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upfront boost Gamma Knife "leading-edge" radiosurgery to FLAIR MRI-defined tumor migration pathways in 174 patients with glioblastoma multiforme: a 15-year assessment of a novel therapy</atitle><jtitle>Journal of neurosurgery</jtitle><addtitle>J Neurosurg</addtitle><date>2016-12</date><risdate>2016</risdate><volume>125</volume><issue>Suppl 1</issue><spage>40</spage><epage>49</epage><pages>40-49</pages><issn>0022-3085</issn><eissn>1933-0693</eissn><abstract>OBJECTIVE Glioblastoma multiforme (GBM) is composed of cells that migrate through the brain along predictable white matter pathways. Targeting white matter pathways adjacent to, and leading away from, the original contrast-enhancing tumor site (termed leading-edge radiosurgery [LERS]) with single-fraction stereotactic radiosurgery as a boost to standard therapy could limit the spread of glioma cells and improve clinical outcomes. METHODS Between December 2000 and May 2016, after an initial diagnosis of GBM and prior to or during standard radiation therapy and carmustine or temozolomide chemotherapy, 174 patients treated with radiosurgery to the leading edge (LE) of tumor cell migration were reviewed. The LE was defined as a region outside the contrast-enhancing tumor nidus, defined by FLAIR MRI. The median age of patients was 59 years (range 22-87 years). Patients underwent LERS a median of 18 days from original diagnosis. The median target volume of 48.5 cm
(range 2.5-220.0 cm
) of LE tissue was targeted using a median dose of 8 Gy (range 6-14 Gy) at the 50% isodose line. RESULTS The median overall survival was 23 months (mean 43 months) from diagnosis. The 2-, 3-, 5-, 7-, and 10-year actual overall survival rates after LERS were 39%, 26%, 16%, 10%, and 4%, respectively. Nine percent of patients developed treatment-related imaging-documented changes due to LERS. Nineteen percent of patients were hospitalized for management of edema, 22% for resection of a tumor cyst or new tumor bulk, and 2% for shunting to treat hydrocephalus throughout the course of their disease. Of the patients still alive, Karnofsky Performance Scale scores remained stable in 90% of patients and decreased by 1-3 grades in 10% due to symptomatic treatment-related imaging changes. CONCLUSIONS LERS is a safe and effective upfront adjunctive therapy for patients with newly diagnosed GBM. Limitations of this study include a single-center experience and single-institution determination of the LE tumor target. Use of a leading-edge calculation algorithm will be described to achieve a consistent approach to defining the LE target for general use. A multicenter trial will further elucidate its value in the treatment of GBM.</abstract><cop>United States</cop><pmid>27903197</pmid><doi>10.3171/2016.7.GKS161460</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3085 |
ispartof | Journal of neurosurgery, 2016-12, Vol.125 (Suppl 1), p.40-49 |
issn | 0022-3085 1933-0693 |
language | eng |
recordid | cdi_proquest_miscellaneous_1845256176 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adult Aged Aged, 80 and over Brain Neoplasms - diagnostic imaging Brain Neoplasms - pathology Brain Neoplasms - radiotherapy Cell Movement Follow-Up Studies Glioblastoma - diagnostic imaging Glioblastoma - pathology Glioblastoma - radiotherapy Humans Magnetic Resonance Imaging - methods Middle Aged Radiosurgery - methods Retrospective Studies Time Factors Treatment Outcome Young Adult |
title | Upfront boost Gamma Knife "leading-edge" radiosurgery to FLAIR MRI-defined tumor migration pathways in 174 patients with glioblastoma multiforme: a 15-year assessment of a novel therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upfront%20boost%20Gamma%20Knife%20%22leading-edge%22%20radiosurgery%20to%20FLAIR%20MRI-defined%20tumor%20migration%20pathways%20in%20174%20patients%20with%20glioblastoma%20multiforme:%20a%2015-year%20assessment%20of%20a%20novel%20therapy&rft.jtitle=Journal%20of%20neurosurgery&rft.au=Duma,%20Christopher%20M&rft.date=2016-12&rft.volume=125&rft.issue=Suppl%201&rft.spage=40&rft.epage=49&rft.pages=40-49&rft.issn=0022-3085&rft.eissn=1933-0693&rft_id=info:doi/10.3171/2016.7.GKS161460&rft_dat=%3Cproquest_cross%3E1845256176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845256176&rft_id=info:pmid/27903197&rfr_iscdi=true |