Limitations in electrophysiological model development and validation caused by differences between simulations and experimental protocols

Models of ion channel dynamics are usually built by fitting isolated cell experimental values of individual parameters while neglecting the interaction between them. Another shortcoming regards the estimation of ionic current conductances, which is often based on quantification of Action Potential (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in biophysics and molecular biology 2017-10, Vol.129, p.53-64
Hauptverfasser: Carro, Jesús, Rodríguez-Matas, José F., Monasterio, Violeta, Pueyo, Esther
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64
container_issue
container_start_page 53
container_title Progress in biophysics and molecular biology
container_volume 129
creator Carro, Jesús
Rodríguez-Matas, José F.
Monasterio, Violeta
Pueyo, Esther
description Models of ion channel dynamics are usually built by fitting isolated cell experimental values of individual parameters while neglecting the interaction between them. Another shortcoming regards the estimation of ionic current conductances, which is often based on quantification of Action Potential (AP)-derived markers. Although this procedure reduces the uncertainty in the calculation of conductances, many studies evaluate electrophysiological AP-derived markers from single cell simulations, whereas experimental measurements are obtained from tissue preparations. In this work, we explore the limitations of these approaches to estimate ion channel dynamics and maximum current conductances and how they could be overcome by using multiscale simulations of experimental protocols. Four human ventricular cell models, namely ten Tusscher and Panfilov (2006), Grandi et al. (2010), O'Hara et al. (2011), and Carro et al. (2011), were used. Two problems involving scales from ion channels to tissue were investigated: 1) characterization of L-type calcium voltage-dependent inactivation ICa,L; 2) identification of major ionic conductance contributors to steady-state AP markers, including APD90, APD75, APD50, APD25, Triangulation and maximal and minimal values of V and dV/dt during the AP (Vmax, Vmin, dV/dtmax, dV/dtmin). Our results show that: 1) ICa,L inactivation characteristics differed significantly when calculated from model equations and from simulations reproducing the experimental protocols. 2) Large differences were found in the ionic currents contributors to APD25, Triangulation, Vmax, dV/dtmax and dV/dtmin between single cells and 1D-tissue. When proposing any new model formulation, or evaluating an existing model, consistency between simulated and experimental data should be verified considering all involved effects and scales.
doi_str_mv 10.1016/j.pbiomolbio.2016.11.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1845250585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S007961071630013X</els_id><sourcerecordid>1845250585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-17ca97c42d8dab2dfc6b7b1c7607061370b8eceffa5ecf685f3bc8f0889aa8bd3</originalsourceid><addsrcrecordid>eNqFUc2O0zAQthCI7S68AvKRS8M4aWLnCCvYRarEZTlb_hmDKycOdlLoI-xb49CyHLmMR9b3MzMfIZRBxYB17w7VpH0cYii1qstPxVgF0D0jGyZ4s2W8qZ-TDQDvtx0DfkWucz4AQM1495Jc1Vz0fc1hQx73fvCzmn0cM_UjxYBmTnH6fso-hvjNGxXoEC0GavGIIU4DjjNVo6VHFbz9w6RGLRkt1SdqvXOYcDSYqcb5J-JIsx-WcLFYifhrwuRXnaI9pThHE0N-RV44FTK-vrw35Ounjw-399v9l7vPt-_3W7Ord3NZzaiel94Kq3Rtnek018zwDjh0rOGgBRp0TrVoXCda12gjHAjRKyW0bW7I27Nucf6xYJ7l4LPBENSIccmSiV1bt9CKtkDFGWpSzDmhk1OZW6WTZCDXIORB_gtCrkFIxmQJolDfXFwWPaB9Iv69fAF8OAOw7Hr0mGQ2fr2b9alEIG30_3f5Dc6gpRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845250585</pqid></control><display><type>article</type><title>Limitations in electrophysiological model development and validation caused by differences between simulations and experimental protocols</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Carro, Jesús ; Rodríguez-Matas, José F. ; Monasterio, Violeta ; Pueyo, Esther</creator><creatorcontrib>Carro, Jesús ; Rodríguez-Matas, José F. ; Monasterio, Violeta ; Pueyo, Esther</creatorcontrib><description>Models of ion channel dynamics are usually built by fitting isolated cell experimental values of individual parameters while neglecting the interaction between them. Another shortcoming regards the estimation of ionic current conductances, which is often based on quantification of Action Potential (AP)-derived markers. Although this procedure reduces the uncertainty in the calculation of conductances, many studies evaluate electrophysiological AP-derived markers from single cell simulations, whereas experimental measurements are obtained from tissue preparations. In this work, we explore the limitations of these approaches to estimate ion channel dynamics and maximum current conductances and how they could be overcome by using multiscale simulations of experimental protocols. Four human ventricular cell models, namely ten Tusscher and Panfilov (2006), Grandi et al. (2010), O'Hara et al. (2011), and Carro et al. (2011), were used. Two problems involving scales from ion channels to tissue were investigated: 1) characterization of L-type calcium voltage-dependent inactivation ICa,L; 2) identification of major ionic conductance contributors to steady-state AP markers, including APD90, APD75, APD50, APD25, Triangulation and maximal and minimal values of V and dV/dt during the AP (Vmax, Vmin, dV/dtmax, dV/dtmin). Our results show that: 1) ICa,L inactivation characteristics differed significantly when calculated from model equations and from simulations reproducing the experimental protocols. 2) Large differences were found in the ionic currents contributors to APD25, Triangulation, Vmax, dV/dtmax and dV/dtmin between single cells and 1D-tissue. When proposing any new model formulation, or evaluating an existing model, consistency between simulated and experimental data should be verified considering all involved effects and scales.</description><identifier>ISSN: 0079-6107</identifier><identifier>EISSN: 1873-1732</identifier><identifier>DOI: 10.1016/j.pbiomolbio.2016.11.006</identifier><identifier>PMID: 27899270</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Action potential ; Action Potentials ; Biomarkers - metabolism ; Calcium - metabolism ; Calcium Channels, L-Type - metabolism ; Cardiac modeling ; Electrophysiological Phenomena ; Electrophysiology ; Heart Ventricles - cytology ; Heart Ventricles - metabolism ; Humans ; Ionic currents ; Model validation ; Models, Cardiovascular</subject><ispartof>Progress in biophysics and molecular biology, 2017-10, Vol.129, p.53-64</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-17ca97c42d8dab2dfc6b7b1c7607061370b8eceffa5ecf685f3bc8f0889aa8bd3</citedby><cites>FETCH-LOGICAL-c424t-17ca97c42d8dab2dfc6b7b1c7607061370b8eceffa5ecf685f3bc8f0889aa8bd3</cites><orcidid>0000-0001-7789-2973</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S007961071630013X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27899270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carro, Jesús</creatorcontrib><creatorcontrib>Rodríguez-Matas, José F.</creatorcontrib><creatorcontrib>Monasterio, Violeta</creatorcontrib><creatorcontrib>Pueyo, Esther</creatorcontrib><title>Limitations in electrophysiological model development and validation caused by differences between simulations and experimental protocols</title><title>Progress in biophysics and molecular biology</title><addtitle>Prog Biophys Mol Biol</addtitle><description>Models of ion channel dynamics are usually built by fitting isolated cell experimental values of individual parameters while neglecting the interaction between them. Another shortcoming regards the estimation of ionic current conductances, which is often based on quantification of Action Potential (AP)-derived markers. Although this procedure reduces the uncertainty in the calculation of conductances, many studies evaluate electrophysiological AP-derived markers from single cell simulations, whereas experimental measurements are obtained from tissue preparations. In this work, we explore the limitations of these approaches to estimate ion channel dynamics and maximum current conductances and how they could be overcome by using multiscale simulations of experimental protocols. Four human ventricular cell models, namely ten Tusscher and Panfilov (2006), Grandi et al. (2010), O'Hara et al. (2011), and Carro et al. (2011), were used. Two problems involving scales from ion channels to tissue were investigated: 1) characterization of L-type calcium voltage-dependent inactivation ICa,L; 2) identification of major ionic conductance contributors to steady-state AP markers, including APD90, APD75, APD50, APD25, Triangulation and maximal and minimal values of V and dV/dt during the AP (Vmax, Vmin, dV/dtmax, dV/dtmin). Our results show that: 1) ICa,L inactivation characteristics differed significantly when calculated from model equations and from simulations reproducing the experimental protocols. 2) Large differences were found in the ionic currents contributors to APD25, Triangulation, Vmax, dV/dtmax and dV/dtmin between single cells and 1D-tissue. When proposing any new model formulation, or evaluating an existing model, consistency between simulated and experimental data should be verified considering all involved effects and scales.</description><subject>Action potential</subject><subject>Action Potentials</subject><subject>Biomarkers - metabolism</subject><subject>Calcium - metabolism</subject><subject>Calcium Channels, L-Type - metabolism</subject><subject>Cardiac modeling</subject><subject>Electrophysiological Phenomena</subject><subject>Electrophysiology</subject><subject>Heart Ventricles - cytology</subject><subject>Heart Ventricles - metabolism</subject><subject>Humans</subject><subject>Ionic currents</subject><subject>Model validation</subject><subject>Models, Cardiovascular</subject><issn>0079-6107</issn><issn>1873-1732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUc2O0zAQthCI7S68AvKRS8M4aWLnCCvYRarEZTlb_hmDKycOdlLoI-xb49CyHLmMR9b3MzMfIZRBxYB17w7VpH0cYii1qstPxVgF0D0jGyZ4s2W8qZ-TDQDvtx0DfkWucz4AQM1495Jc1Vz0fc1hQx73fvCzmn0cM_UjxYBmTnH6fso-hvjNGxXoEC0GavGIIU4DjjNVo6VHFbz9w6RGLRkt1SdqvXOYcDSYqcb5J-JIsx-WcLFYifhrwuRXnaI9pThHE0N-RV44FTK-vrw35Ounjw-399v9l7vPt-_3W7Ord3NZzaiel94Kq3Rtnek018zwDjh0rOGgBRp0TrVoXCda12gjHAjRKyW0bW7I27Nucf6xYJ7l4LPBENSIccmSiV1bt9CKtkDFGWpSzDmhk1OZW6WTZCDXIORB_gtCrkFIxmQJolDfXFwWPaB9Iv69fAF8OAOw7Hr0mGQ2fr2b9alEIG30_3f5Dc6gpRg</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Carro, Jesús</creator><creator>Rodríguez-Matas, José F.</creator><creator>Monasterio, Violeta</creator><creator>Pueyo, Esther</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7789-2973</orcidid></search><sort><creationdate>201710</creationdate><title>Limitations in electrophysiological model development and validation caused by differences between simulations and experimental protocols</title><author>Carro, Jesús ; Rodríguez-Matas, José F. ; Monasterio, Violeta ; Pueyo, Esther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-17ca97c42d8dab2dfc6b7b1c7607061370b8eceffa5ecf685f3bc8f0889aa8bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Action potential</topic><topic>Action Potentials</topic><topic>Biomarkers - metabolism</topic><topic>Calcium - metabolism</topic><topic>Calcium Channels, L-Type - metabolism</topic><topic>Cardiac modeling</topic><topic>Electrophysiological Phenomena</topic><topic>Electrophysiology</topic><topic>Heart Ventricles - cytology</topic><topic>Heart Ventricles - metabolism</topic><topic>Humans</topic><topic>Ionic currents</topic><topic>Model validation</topic><topic>Models, Cardiovascular</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carro, Jesús</creatorcontrib><creatorcontrib>Rodríguez-Matas, José F.</creatorcontrib><creatorcontrib>Monasterio, Violeta</creatorcontrib><creatorcontrib>Pueyo, Esther</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Progress in biophysics and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carro, Jesús</au><au>Rodríguez-Matas, José F.</au><au>Monasterio, Violeta</au><au>Pueyo, Esther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limitations in electrophysiological model development and validation caused by differences between simulations and experimental protocols</atitle><jtitle>Progress in biophysics and molecular biology</jtitle><addtitle>Prog Biophys Mol Biol</addtitle><date>2017-10</date><risdate>2017</risdate><volume>129</volume><spage>53</spage><epage>64</epage><pages>53-64</pages><issn>0079-6107</issn><eissn>1873-1732</eissn><abstract>Models of ion channel dynamics are usually built by fitting isolated cell experimental values of individual parameters while neglecting the interaction between them. Another shortcoming regards the estimation of ionic current conductances, which is often based on quantification of Action Potential (AP)-derived markers. Although this procedure reduces the uncertainty in the calculation of conductances, many studies evaluate electrophysiological AP-derived markers from single cell simulations, whereas experimental measurements are obtained from tissue preparations. In this work, we explore the limitations of these approaches to estimate ion channel dynamics and maximum current conductances and how they could be overcome by using multiscale simulations of experimental protocols. Four human ventricular cell models, namely ten Tusscher and Panfilov (2006), Grandi et al. (2010), O'Hara et al. (2011), and Carro et al. (2011), were used. Two problems involving scales from ion channels to tissue were investigated: 1) characterization of L-type calcium voltage-dependent inactivation ICa,L; 2) identification of major ionic conductance contributors to steady-state AP markers, including APD90, APD75, APD50, APD25, Triangulation and maximal and minimal values of V and dV/dt during the AP (Vmax, Vmin, dV/dtmax, dV/dtmin). Our results show that: 1) ICa,L inactivation characteristics differed significantly when calculated from model equations and from simulations reproducing the experimental protocols. 2) Large differences were found in the ionic currents contributors to APD25, Triangulation, Vmax, dV/dtmax and dV/dtmin between single cells and 1D-tissue. When proposing any new model formulation, or evaluating an existing model, consistency between simulated and experimental data should be verified considering all involved effects and scales.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>27899270</pmid><doi>10.1016/j.pbiomolbio.2016.11.006</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7789-2973</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0079-6107
ispartof Progress in biophysics and molecular biology, 2017-10, Vol.129, p.53-64
issn 0079-6107
1873-1732
language eng
recordid cdi_proquest_miscellaneous_1845250585
source MEDLINE; Elsevier ScienceDirect Journals
subjects Action potential
Action Potentials
Biomarkers - metabolism
Calcium - metabolism
Calcium Channels, L-Type - metabolism
Cardiac modeling
Electrophysiological Phenomena
Electrophysiology
Heart Ventricles - cytology
Heart Ventricles - metabolism
Humans
Ionic currents
Model validation
Models, Cardiovascular
title Limitations in electrophysiological model development and validation caused by differences between simulations and experimental protocols
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A59%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limitations%20in%20electrophysiological%20model%20development%20and%20validation%20caused%20by%20differences%20between%20simulations%20and%20experimental%20protocols&rft.jtitle=Progress%20in%20biophysics%20and%20molecular%20biology&rft.au=Carro,%20Jes%C3%BAs&rft.date=2017-10&rft.volume=129&rft.spage=53&rft.epage=64&rft.pages=53-64&rft.issn=0079-6107&rft.eissn=1873-1732&rft_id=info:doi/10.1016/j.pbiomolbio.2016.11.006&rft_dat=%3Cproquest_cross%3E1845250585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845250585&rft_id=info:pmid/27899270&rft_els_id=S007961071630013X&rfr_iscdi=true