Spatial resolution and velocity field improvement of 4D‐flow MRI

Purpose 4D‐flow MRI obtains a time‐dependent 3D velocity field; however, its use for the calculation of higher‐order parameters is limited by noise. We present an algorithm for denoising 4D‐flow data. Theory and Methods By integrating a velocity field and eliminating streamlines in noisy flow, depic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2017-11, Vol.78 (5), p.1959-1968
Hauptverfasser: Callaghan, Fraser M., Grieve, Stuart M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1968
container_issue 5
container_start_page 1959
container_title Magnetic resonance in medicine
container_volume 78
creator Callaghan, Fraser M.
Grieve, Stuart M.
description Purpose 4D‐flow MRI obtains a time‐dependent 3D velocity field; however, its use for the calculation of higher‐order parameters is limited by noise. We present an algorithm for denoising 4D‐flow data. Theory and Methods By integrating a velocity field and eliminating streamlines in noisy flow, depicted by high curvature, a denoised dataset may be extracted. This method, defined as the velocity field improvement (VFIT) algorithm, was validated in an analytical dataset and using in vivo data in comparison with a computation fluid dynamics (CFD) simulation. As a proof of principal, wall shear stress (WSS) measurements in the descending aorta were compared with those defined by CFD. Results The VFIT algorithm achieved a >100% noise reduction of a corrupted analytical dataset. In addition, 4D‐flow data were cleaned to show improved spatial resolution and near wall velocity representation. WSS measures compared well with CFD data and bulk flow dynamics were retained (
doi_str_mv 10.1002/mrm.26557
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1844023420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1844023420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3887-701ee1764b56b982a11c354f8102c7d306608300c9a254a1235d0b608acc3f883</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoznhZ-AJScKOLjie3Jll6V3AQRl2HTJpCh7QZm1aZnY_gM_okVqsuBFcHDh8fPx9CexgmGIAcV001IRnnYg2NMSckJVyxdTQGwSClWLER2opxAQBKCbaJRkRIyQWIMTq9X5q2ND5pXAy-a8tQJ6bOk2fngy3bVVKUzudJWS2b8OwqV7dJKBJ2_v76VvjwkkxnNztoozA-ut3vu40eLy8ezq7T27urm7OT29RSKUUqADuHRcbmPJsrSQzGlnJWSAzEipxCloGkAFYZwpnBhPIc5v3PWEsLKek2Ohy8_ZSnzsVWV2W0zntTu9BFjSVjQCgj0KMHf9BF6Jq6X6ex4pARnineU0cDZZsQY-MKvWzKyjQrjUF_htV9WP0Vtmf3v43dvHL5L_lTsgeOB-Cl9G71v0lPZ9NB-QHDh4AM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1950625695</pqid></control><display><type>article</type><title>Spatial resolution and velocity field improvement of 4D‐flow MRI</title><source>MEDLINE</source><source>Wiley Online Library</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Callaghan, Fraser M. ; Grieve, Stuart M.</creator><creatorcontrib>Callaghan, Fraser M. ; Grieve, Stuart M.</creatorcontrib><description>Purpose 4D‐flow MRI obtains a time‐dependent 3D velocity field; however, its use for the calculation of higher‐order parameters is limited by noise. We present an algorithm for denoising 4D‐flow data. Theory and Methods By integrating a velocity field and eliminating streamlines in noisy flow, depicted by high curvature, a denoised dataset may be extracted. This method, defined as the velocity field improvement (VFIT) algorithm, was validated in an analytical dataset and using in vivo data in comparison with a computation fluid dynamics (CFD) simulation. As a proof of principal, wall shear stress (WSS) measurements in the descending aorta were compared with those defined by CFD. Results The VFIT algorithm achieved a &gt;100% noise reduction of a corrupted analytical dataset. In addition, 4D‐flow data were cleaned to show improved spatial resolution and near wall velocity representation. WSS measures compared well with CFD data and bulk flow dynamics were retained (&lt;2% difference in flow measurements). Conclusion This study presents a method for denoising 4D‐flow datasets with improved spatial resolution. Bulk flow dynamics are accurately conserved while velocity and velocity gradient fields are improved; this is important in the calculation of higher‐order parameters such as WSS, which are shown to be more comparable to CFD measures. Magn Reson Med 78:1959–1968, 2017. © 2016 International Society for Magnetic Resonance in Medicine.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.26557</identifier><identifier>PMID: 27885707</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>4D‐flow ; Adult ; Algorithms ; Aorta ; Aorta, Thoracic - diagnostic imaging ; Blood Flow Velocity ; Computational fluid dynamics ; Computer Simulation ; Curvature ; Datasets ; denoising ; Fluid dynamics ; Humans ; Hydrodynamics ; Imaging, Three-Dimensional - methods ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Mathematical analysis ; Mechanical stimuli ; Noise reduction ; Order parameters ; Shear stress ; Simulation ; Spatial discrimination ; Spatial resolution ; Velocity ; Velocity gradient ; wall shear stress</subject><ispartof>Magnetic resonance in medicine, 2017-11, Vol.78 (5), p.1959-1968</ispartof><rights>2016 International Society for Magnetic Resonance in Medicine</rights><rights>2016 International Society for Magnetic Resonance in Medicine.</rights><rights>2017 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3887-701ee1764b56b982a11c354f8102c7d306608300c9a254a1235d0b608acc3f883</citedby><cites>FETCH-LOGICAL-c3887-701ee1764b56b982a11c354f8102c7d306608300c9a254a1235d0b608acc3f883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.26557$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.26557$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27885707$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Callaghan, Fraser M.</creatorcontrib><creatorcontrib>Grieve, Stuart M.</creatorcontrib><title>Spatial resolution and velocity field improvement of 4D‐flow MRI</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose 4D‐flow MRI obtains a time‐dependent 3D velocity field; however, its use for the calculation of higher‐order parameters is limited by noise. We present an algorithm for denoising 4D‐flow data. Theory and Methods By integrating a velocity field and eliminating streamlines in noisy flow, depicted by high curvature, a denoised dataset may be extracted. This method, defined as the velocity field improvement (VFIT) algorithm, was validated in an analytical dataset and using in vivo data in comparison with a computation fluid dynamics (CFD) simulation. As a proof of principal, wall shear stress (WSS) measurements in the descending aorta were compared with those defined by CFD. Results The VFIT algorithm achieved a &gt;100% noise reduction of a corrupted analytical dataset. In addition, 4D‐flow data were cleaned to show improved spatial resolution and near wall velocity representation. WSS measures compared well with CFD data and bulk flow dynamics were retained (&lt;2% difference in flow measurements). Conclusion This study presents a method for denoising 4D‐flow datasets with improved spatial resolution. Bulk flow dynamics are accurately conserved while velocity and velocity gradient fields are improved; this is important in the calculation of higher‐order parameters such as WSS, which are shown to be more comparable to CFD measures. Magn Reson Med 78:1959–1968, 2017. © 2016 International Society for Magnetic Resonance in Medicine.</description><subject>4D‐flow</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Aorta</subject><subject>Aorta, Thoracic - diagnostic imaging</subject><subject>Blood Flow Velocity</subject><subject>Computational fluid dynamics</subject><subject>Computer Simulation</subject><subject>Curvature</subject><subject>Datasets</subject><subject>denoising</subject><subject>Fluid dynamics</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Mathematical analysis</subject><subject>Mechanical stimuli</subject><subject>Noise reduction</subject><subject>Order parameters</subject><subject>Shear stress</subject><subject>Simulation</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Velocity</subject><subject>Velocity gradient</subject><subject>wall shear stress</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtKxDAUhoMoznhZ-AJScKOLjie3Jll6V3AQRl2HTJpCh7QZm1aZnY_gM_okVqsuBFcHDh8fPx9CexgmGIAcV001IRnnYg2NMSckJVyxdTQGwSClWLER2opxAQBKCbaJRkRIyQWIMTq9X5q2ND5pXAy-a8tQJ6bOk2fngy3bVVKUzudJWS2b8OwqV7dJKBJ2_v76VvjwkkxnNztoozA-ut3vu40eLy8ezq7T27urm7OT29RSKUUqADuHRcbmPJsrSQzGlnJWSAzEipxCloGkAFYZwpnBhPIc5v3PWEsLKek2Ohy8_ZSnzsVWV2W0zntTu9BFjSVjQCgj0KMHf9BF6Jq6X6ex4pARnineU0cDZZsQY-MKvWzKyjQrjUF_htV9WP0Vtmf3v43dvHL5L_lTsgeOB-Cl9G71v0lPZ9NB-QHDh4AM</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Callaghan, Fraser M.</creator><creator>Grieve, Stuart M.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201711</creationdate><title>Spatial resolution and velocity field improvement of 4D‐flow MRI</title><author>Callaghan, Fraser M. ; Grieve, Stuart M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3887-701ee1764b56b982a11c354f8102c7d306608300c9a254a1235d0b608acc3f883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>4D‐flow</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Aorta</topic><topic>Aorta, Thoracic - diagnostic imaging</topic><topic>Blood Flow Velocity</topic><topic>Computational fluid dynamics</topic><topic>Computer Simulation</topic><topic>Curvature</topic><topic>Datasets</topic><topic>denoising</topic><topic>Fluid dynamics</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Mathematical analysis</topic><topic>Mechanical stimuli</topic><topic>Noise reduction</topic><topic>Order parameters</topic><topic>Shear stress</topic><topic>Simulation</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Velocity</topic><topic>Velocity gradient</topic><topic>wall shear stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Callaghan, Fraser M.</creatorcontrib><creatorcontrib>Grieve, Stuart M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Callaghan, Fraser M.</au><au>Grieve, Stuart M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial resolution and velocity field improvement of 4D‐flow MRI</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2017-11</date><risdate>2017</risdate><volume>78</volume><issue>5</issue><spage>1959</spage><epage>1968</epage><pages>1959-1968</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose 4D‐flow MRI obtains a time‐dependent 3D velocity field; however, its use for the calculation of higher‐order parameters is limited by noise. We present an algorithm for denoising 4D‐flow data. Theory and Methods By integrating a velocity field and eliminating streamlines in noisy flow, depicted by high curvature, a denoised dataset may be extracted. This method, defined as the velocity field improvement (VFIT) algorithm, was validated in an analytical dataset and using in vivo data in comparison with a computation fluid dynamics (CFD) simulation. As a proof of principal, wall shear stress (WSS) measurements in the descending aorta were compared with those defined by CFD. Results The VFIT algorithm achieved a &gt;100% noise reduction of a corrupted analytical dataset. In addition, 4D‐flow data were cleaned to show improved spatial resolution and near wall velocity representation. WSS measures compared well with CFD data and bulk flow dynamics were retained (&lt;2% difference in flow measurements). Conclusion This study presents a method for denoising 4D‐flow datasets with improved spatial resolution. Bulk flow dynamics are accurately conserved while velocity and velocity gradient fields are improved; this is important in the calculation of higher‐order parameters such as WSS, which are shown to be more comparable to CFD measures. Magn Reson Med 78:1959–1968, 2017. © 2016 International Society for Magnetic Resonance in Medicine.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27885707</pmid><doi>10.1002/mrm.26557</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2017-11, Vol.78 (5), p.1959-1968
issn 0740-3194
1522-2594
language eng
recordid cdi_proquest_miscellaneous_1844023420
source MEDLINE; Wiley Online Library; Wiley Online Library Journals Frontfile Complete
subjects 4D‐flow
Adult
Algorithms
Aorta
Aorta, Thoracic - diagnostic imaging
Blood Flow Velocity
Computational fluid dynamics
Computer Simulation
Curvature
Datasets
denoising
Fluid dynamics
Humans
Hydrodynamics
Imaging, Three-Dimensional - methods
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Mathematical analysis
Mechanical stimuli
Noise reduction
Order parameters
Shear stress
Simulation
Spatial discrimination
Spatial resolution
Velocity
Velocity gradient
wall shear stress
title Spatial resolution and velocity field improvement of 4D‐flow MRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A40%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20resolution%20and%20velocity%20field%20improvement%20of%204D%E2%80%90flow%20MRI&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Callaghan,%20Fraser%20M.&rft.date=2017-11&rft.volume=78&rft.issue=5&rft.spage=1959&rft.epage=1968&rft.pages=1959-1968&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.26557&rft_dat=%3Cproquest_cross%3E1844023420%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1950625695&rft_id=info:pmid/27885707&rfr_iscdi=true