Development and optimization of a meloxicam/β-cyclodextrin complex for orally disintegrating tablet using statistical analysis
The purpose of this research was to develop an inclusion complex of meloxicam (MEL)/β-cyclodextrin (β-CD) incorporated into an orally disintegrating tablet (ODT), using statistical analysis to optimize the ODT formulation based on a quality by design (QbD) approach. MEL/β-CD complexation was perform...
Gespeichert in:
Veröffentlicht in: | Pharmaceutical development and technology 2018-06, Vol.23 (5), p.464-475 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this research was to develop an inclusion complex of meloxicam (MEL)/β-cyclodextrin (β-CD) incorporated into an orally disintegrating tablet (ODT), using statistical analysis to optimize the ODT formulation based on a quality by design (QbD) approach. MEL/β-CD complexation was performed by kneading, co-precipitation and spray drying methods under different molar ratios. Fourier transform infrared spectroscopy, X-ray diffraction and thermal analysis were utilized to evaluate the complexes. A central composite design (α = 2) was applied to optimize and assess the influence of Primojel, Primellose and crushing strength (CS) as independent variables on tablet friability, disintegration behavior, wicking properties and drug release. The spray drying method induced formation of an amorphous complex and enhanced solubility and drug release of MEL. Furthermore, a QbD-based statistical analysis was successfully utilized to optimize the ODT formulation. Primojel, Primellose and CS showed unique main effects and interactions at different levels. CS was the dominant factor, affecting friability, disintegration behavior and drug release, while wicking properties were affected by Primojel and its interaction with Primellose. Therefore, according to the overlay plot, CS was dominant factor in determining the optimum region based on a QbD approach. |
---|---|
ISSN: | 1083-7450 1097-9867 |
DOI: | 10.1080/10837450.2016.1264418 |