Magnetic Resonance Imaging of Neuronal Connections in the Macaque Monkey

Recently, an MRI-detectable, neuronal tract-tracing method in living animals was introduced that exploits the anterograde transport of manganese (Mn 2+). We present the results of experiments simultaneously tracing manganese chloride and wheat germ agglutinin conjugated to horseradish peroxidase (WG...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2002-05, Vol.34 (5), p.685-700
Hauptverfasser: Saleem, Kadharbatcha S., Pauls, Jon M., Augath, Mark, Trinath, Torsten, Prause, Burkhard A., Hashikawa, Tsutomu, Logothetis, Nikos K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 700
container_issue 5
container_start_page 685
container_title Neuron (Cambridge, Mass.)
container_volume 34
creator Saleem, Kadharbatcha S.
Pauls, Jon M.
Augath, Mark
Trinath, Torsten
Prause, Burkhard A.
Hashikawa, Tsutomu
Logothetis, Nikos K.
description Recently, an MRI-detectable, neuronal tract-tracing method in living animals was introduced that exploits the anterograde transport of manganese (Mn 2+). We present the results of experiments simultaneously tracing manganese chloride and wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) to evaluate the specificity of the former by tracing the neuronal connections of the basal ganglia of the monkey. Mn 2+ and WGA-HRP yielded remarkably similar and highly specific projection patterns. By showing the sequential transport of Mn 2+ from striatum to pallidum-substantia nigra and then to thalamus, we demonstrated MRI visualization of transport across at least one synapse in the CNS of the primate. Transsynaptic tract tracing in living primates will allow chronic studies of development and plasticity and provide valuable anatomical information for fMRI and electrophysiological experiments in primates.
doi_str_mv 10.1016/S0896-6273(02)00718-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18433408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627302007183</els_id><sourcerecordid>3235359121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-6208e5a5c49a3bb79f7d0263d9a8b948a5ca49ccec2591725427dea9d60d4f883</originalsourceid><addsrcrecordid>eNqFkFtLHDEUgEOp1FX7EyoDBdGH0ZPLTJKnUhZvoC308hyymTNr7G6yJjOC_96suyj0xacD53zn9hHyhcIpBdqe_Qal27plkh8DOwGQVNX8A5lQ0LIWVOuPZPKK7JK9nO8BqGg0_UR2KYOWAZUTcnVr5wEH76pfmGOwwWF1vbRzH-ZV7KsfOKaSXVTTGAK6wceQKx-q4Q6rW-vsw1hiDP_w6YDs9HaR8fM27pO_F-d_plf1zc_L6-n3m9o1qhnKNaCwsY0T2vLZTOpedsBa3mmrZlqoUrFCO4eOlVMlawSTHVrdtdCJXim-T442c1cplu15MEufHS4WNmAcs6FKcC5gDX79D7yPYyq_FKYBLlsuGC1Us6Fcijkn7M0q-aVNT4aCWYs2L6LN2qIBZl5EG176DrfTx9kSu7eurdkCfNsAWGQ8ekwmO49Fb-dTEWm66N9Z8QxX-oun</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503763421</pqid></control><display><type>article</type><title>Magnetic Resonance Imaging of Neuronal Connections in the Macaque Monkey</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Saleem, Kadharbatcha S. ; Pauls, Jon M. ; Augath, Mark ; Trinath, Torsten ; Prause, Burkhard A. ; Hashikawa, Tsutomu ; Logothetis, Nikos K.</creator><creatorcontrib>Saleem, Kadharbatcha S. ; Pauls, Jon M. ; Augath, Mark ; Trinath, Torsten ; Prause, Burkhard A. ; Hashikawa, Tsutomu ; Logothetis, Nikos K.</creatorcontrib><description>Recently, an MRI-detectable, neuronal tract-tracing method in living animals was introduced that exploits the anterograde transport of manganese (Mn 2+). We present the results of experiments simultaneously tracing manganese chloride and wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) to evaluate the specificity of the former by tracing the neuronal connections of the basal ganglia of the monkey. Mn 2+ and WGA-HRP yielded remarkably similar and highly specific projection patterns. By showing the sequential transport of Mn 2+ from striatum to pallidum-substantia nigra and then to thalamus, we demonstrated MRI visualization of transport across at least one synapse in the CNS of the primate. Transsynaptic tract tracing in living primates will allow chronic studies of development and plasticity and provide valuable anatomical information for fMRI and electrophysiological experiments in primates.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/S0896-6273(02)00718-3</identifier><identifier>PMID: 12062017</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Axonal Transport - drug effects ; Axonal Transport - physiology ; Basal Ganglia - cytology ; Basal Ganglia - drug effects ; Basal Ganglia - physiology ; Behavior, Animal - drug effects ; Behavior, Animal - physiology ; Brain ; Brain Mapping - instrumentation ; Brain Mapping - methods ; Chlorides - adverse effects ; Globus Pallidus - cytology ; Globus Pallidus - drug effects ; Globus Pallidus - physiology ; Macaca mulatta - anatomy &amp; histology ; Macaca mulatta - physiology ; Magnetic Resonance Imaging ; Manganese Compounds - adverse effects ; Motion pictures ; Neostriatum - cytology ; Neostriatum - drug effects ; Neostriatum - physiology ; Neural networks ; Neural Pathways - cytology ; Neural Pathways - drug effects ; Neural Pathways - physiology ; Neurons - cytology ; Neurons - drug effects ; Neurons - physiology ; Neurotoxins - adverse effects ; Parkinson's disease ; Prefrontal Cortex - cytology ; Prefrontal Cortex - drug effects ; Prefrontal Cortex - physiology ; Studies ; Substantia Nigra - cytology ; Substantia Nigra - physiology ; Thalamus - cytology ; Thalamus - drug effects ; Thalamus - physiology ; Time Factors ; Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate</subject><ispartof>Neuron (Cambridge, Mass.), 2002-05, Vol.34 (5), p.685-700</ispartof><rights>2002 Cell Press</rights><rights>Copyright Elsevier Limited May 30, 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-6208e5a5c49a3bb79f7d0263d9a8b948a5ca49ccec2591725427dea9d60d4f883</citedby><cites>FETCH-LOGICAL-c585t-6208e5a5c49a3bb79f7d0263d9a8b948a5ca49ccec2591725427dea9d60d4f883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0896-6273(02)00718-3$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12062017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saleem, Kadharbatcha S.</creatorcontrib><creatorcontrib>Pauls, Jon M.</creatorcontrib><creatorcontrib>Augath, Mark</creatorcontrib><creatorcontrib>Trinath, Torsten</creatorcontrib><creatorcontrib>Prause, Burkhard A.</creatorcontrib><creatorcontrib>Hashikawa, Tsutomu</creatorcontrib><creatorcontrib>Logothetis, Nikos K.</creatorcontrib><title>Magnetic Resonance Imaging of Neuronal Connections in the Macaque Monkey</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Recently, an MRI-detectable, neuronal tract-tracing method in living animals was introduced that exploits the anterograde transport of manganese (Mn 2+). We present the results of experiments simultaneously tracing manganese chloride and wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) to evaluate the specificity of the former by tracing the neuronal connections of the basal ganglia of the monkey. Mn 2+ and WGA-HRP yielded remarkably similar and highly specific projection patterns. By showing the sequential transport of Mn 2+ from striatum to pallidum-substantia nigra and then to thalamus, we demonstrated MRI visualization of transport across at least one synapse in the CNS of the primate. Transsynaptic tract tracing in living primates will allow chronic studies of development and plasticity and provide valuable anatomical information for fMRI and electrophysiological experiments in primates.</description><subject>Animals</subject><subject>Axonal Transport - drug effects</subject><subject>Axonal Transport - physiology</subject><subject>Basal Ganglia - cytology</subject><subject>Basal Ganglia - drug effects</subject><subject>Basal Ganglia - physiology</subject><subject>Behavior, Animal - drug effects</subject><subject>Behavior, Animal - physiology</subject><subject>Brain</subject><subject>Brain Mapping - instrumentation</subject><subject>Brain Mapping - methods</subject><subject>Chlorides - adverse effects</subject><subject>Globus Pallidus - cytology</subject><subject>Globus Pallidus - drug effects</subject><subject>Globus Pallidus - physiology</subject><subject>Macaca mulatta - anatomy &amp; histology</subject><subject>Macaca mulatta - physiology</subject><subject>Magnetic Resonance Imaging</subject><subject>Manganese Compounds - adverse effects</subject><subject>Motion pictures</subject><subject>Neostriatum - cytology</subject><subject>Neostriatum - drug effects</subject><subject>Neostriatum - physiology</subject><subject>Neural networks</subject><subject>Neural Pathways - cytology</subject><subject>Neural Pathways - drug effects</subject><subject>Neural Pathways - physiology</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Neurotoxins - adverse effects</subject><subject>Parkinson's disease</subject><subject>Prefrontal Cortex - cytology</subject><subject>Prefrontal Cortex - drug effects</subject><subject>Prefrontal Cortex - physiology</subject><subject>Studies</subject><subject>Substantia Nigra - cytology</subject><subject>Substantia Nigra - physiology</subject><subject>Thalamus - cytology</subject><subject>Thalamus - drug effects</subject><subject>Thalamus - physiology</subject><subject>Time Factors</subject><subject>Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkFtLHDEUgEOp1FX7EyoDBdGH0ZPLTJKnUhZvoC308hyymTNr7G6yJjOC_96suyj0xacD53zn9hHyhcIpBdqe_Qal27plkh8DOwGQVNX8A5lQ0LIWVOuPZPKK7JK9nO8BqGg0_UR2KYOWAZUTcnVr5wEH76pfmGOwwWF1vbRzH-ZV7KsfOKaSXVTTGAK6wceQKx-q4Q6rW-vsw1hiDP_w6YDs9HaR8fM27pO_F-d_plf1zc_L6-n3m9o1qhnKNaCwsY0T2vLZTOpedsBa3mmrZlqoUrFCO4eOlVMlawSTHVrdtdCJXim-T442c1cplu15MEufHS4WNmAcs6FKcC5gDX79D7yPYyq_FKYBLlsuGC1Us6Fcijkn7M0q-aVNT4aCWYs2L6LN2qIBZl5EG176DrfTx9kSu7eurdkCfNsAWGQ8ekwmO49Fb-dTEWm66N9Z8QxX-oun</recordid><startdate>20020530</startdate><enddate>20020530</enddate><creator>Saleem, Kadharbatcha S.</creator><creator>Pauls, Jon M.</creator><creator>Augath, Mark</creator><creator>Trinath, Torsten</creator><creator>Prause, Burkhard A.</creator><creator>Hashikawa, Tsutomu</creator><creator>Logothetis, Nikos K.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope></search><sort><creationdate>20020530</creationdate><title>Magnetic Resonance Imaging of Neuronal Connections in the Macaque Monkey</title><author>Saleem, Kadharbatcha S. ; Pauls, Jon M. ; Augath, Mark ; Trinath, Torsten ; Prause, Burkhard A. ; Hashikawa, Tsutomu ; Logothetis, Nikos K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-6208e5a5c49a3bb79f7d0263d9a8b948a5ca49ccec2591725427dea9d60d4f883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Axonal Transport - drug effects</topic><topic>Axonal Transport - physiology</topic><topic>Basal Ganglia - cytology</topic><topic>Basal Ganglia - drug effects</topic><topic>Basal Ganglia - physiology</topic><topic>Behavior, Animal - drug effects</topic><topic>Behavior, Animal - physiology</topic><topic>Brain</topic><topic>Brain Mapping - instrumentation</topic><topic>Brain Mapping - methods</topic><topic>Chlorides - adverse effects</topic><topic>Globus Pallidus - cytology</topic><topic>Globus Pallidus - drug effects</topic><topic>Globus Pallidus - physiology</topic><topic>Macaca mulatta - anatomy &amp; histology</topic><topic>Macaca mulatta - physiology</topic><topic>Magnetic Resonance Imaging</topic><topic>Manganese Compounds - adverse effects</topic><topic>Motion pictures</topic><topic>Neostriatum - cytology</topic><topic>Neostriatum - drug effects</topic><topic>Neostriatum - physiology</topic><topic>Neural networks</topic><topic>Neural Pathways - cytology</topic><topic>Neural Pathways - drug effects</topic><topic>Neural Pathways - physiology</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Neurotoxins - adverse effects</topic><topic>Parkinson's disease</topic><topic>Prefrontal Cortex - cytology</topic><topic>Prefrontal Cortex - drug effects</topic><topic>Prefrontal Cortex - physiology</topic><topic>Studies</topic><topic>Substantia Nigra - cytology</topic><topic>Substantia Nigra - physiology</topic><topic>Thalamus - cytology</topic><topic>Thalamus - drug effects</topic><topic>Thalamus - physiology</topic><topic>Time Factors</topic><topic>Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saleem, Kadharbatcha S.</creatorcontrib><creatorcontrib>Pauls, Jon M.</creatorcontrib><creatorcontrib>Augath, Mark</creatorcontrib><creatorcontrib>Trinath, Torsten</creatorcontrib><creatorcontrib>Prause, Burkhard A.</creatorcontrib><creatorcontrib>Hashikawa, Tsutomu</creatorcontrib><creatorcontrib>Logothetis, Nikos K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saleem, Kadharbatcha S.</au><au>Pauls, Jon M.</au><au>Augath, Mark</au><au>Trinath, Torsten</au><au>Prause, Burkhard A.</au><au>Hashikawa, Tsutomu</au><au>Logothetis, Nikos K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Resonance Imaging of Neuronal Connections in the Macaque Monkey</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2002-05-30</date><risdate>2002</risdate><volume>34</volume><issue>5</issue><spage>685</spage><epage>700</epage><pages>685-700</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Recently, an MRI-detectable, neuronal tract-tracing method in living animals was introduced that exploits the anterograde transport of manganese (Mn 2+). We present the results of experiments simultaneously tracing manganese chloride and wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) to evaluate the specificity of the former by tracing the neuronal connections of the basal ganglia of the monkey. Mn 2+ and WGA-HRP yielded remarkably similar and highly specific projection patterns. By showing the sequential transport of Mn 2+ from striatum to pallidum-substantia nigra and then to thalamus, we demonstrated MRI visualization of transport across at least one synapse in the CNS of the primate. Transsynaptic tract tracing in living primates will allow chronic studies of development and plasticity and provide valuable anatomical information for fMRI and electrophysiological experiments in primates.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12062017</pmid><doi>10.1016/S0896-6273(02)00718-3</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2002-05, Vol.34 (5), p.685-700
issn 0896-6273
1097-4199
language eng
recordid cdi_proquest_miscellaneous_18433408
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects Animals
Axonal Transport - drug effects
Axonal Transport - physiology
Basal Ganglia - cytology
Basal Ganglia - drug effects
Basal Ganglia - physiology
Behavior, Animal - drug effects
Behavior, Animal - physiology
Brain
Brain Mapping - instrumentation
Brain Mapping - methods
Chlorides - adverse effects
Globus Pallidus - cytology
Globus Pallidus - drug effects
Globus Pallidus - physiology
Macaca mulatta - anatomy & histology
Macaca mulatta - physiology
Magnetic Resonance Imaging
Manganese Compounds - adverse effects
Motion pictures
Neostriatum - cytology
Neostriatum - drug effects
Neostriatum - physiology
Neural networks
Neural Pathways - cytology
Neural Pathways - drug effects
Neural Pathways - physiology
Neurons - cytology
Neurons - drug effects
Neurons - physiology
Neurotoxins - adverse effects
Parkinson's disease
Prefrontal Cortex - cytology
Prefrontal Cortex - drug effects
Prefrontal Cortex - physiology
Studies
Substantia Nigra - cytology
Substantia Nigra - physiology
Thalamus - cytology
Thalamus - drug effects
Thalamus - physiology
Time Factors
Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate
title Magnetic Resonance Imaging of Neuronal Connections in the Macaque Monkey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Resonance%20Imaging%20of%20Neuronal%20Connections%20in%20the%20Macaque%20Monkey&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Saleem,%20Kadharbatcha%20S.&rft.date=2002-05-30&rft.volume=34&rft.issue=5&rft.spage=685&rft.epage=700&rft.pages=685-700&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/S0896-6273(02)00718-3&rft_dat=%3Cproquest_cross%3E3235359121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503763421&rft_id=info:pmid/12062017&rft_els_id=S0896627302007183&rfr_iscdi=true