Magnetic Resonance Imaging of Neuronal Connections in the Macaque Monkey
Recently, an MRI-detectable, neuronal tract-tracing method in living animals was introduced that exploits the anterograde transport of manganese (Mn 2+). We present the results of experiments simultaneously tracing manganese chloride and wheat germ agglutinin conjugated to horseradish peroxidase (WG...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2002-05, Vol.34 (5), p.685-700 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 700 |
---|---|
container_issue | 5 |
container_start_page | 685 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 34 |
creator | Saleem, Kadharbatcha S. Pauls, Jon M. Augath, Mark Trinath, Torsten Prause, Burkhard A. Hashikawa, Tsutomu Logothetis, Nikos K. |
description | Recently, an MRI-detectable, neuronal tract-tracing method in living animals was introduced that exploits the anterograde transport of manganese (Mn
2+). We present the results of experiments simultaneously tracing manganese chloride and wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) to evaluate the specificity of the former by tracing the neuronal connections of the basal ganglia of the monkey. Mn
2+ and WGA-HRP yielded remarkably similar and highly specific projection patterns. By showing the sequential transport of Mn
2+ from striatum to pallidum-substantia nigra and then to thalamus, we demonstrated MRI visualization of transport across at least one synapse in the CNS of the primate. Transsynaptic tract tracing in living primates will allow chronic studies of development and plasticity and provide valuable anatomical information for fMRI and electrophysiological experiments in primates. |
doi_str_mv | 10.1016/S0896-6273(02)00718-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18433408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627302007183</els_id><sourcerecordid>3235359121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-6208e5a5c49a3bb79f7d0263d9a8b948a5ca49ccec2591725427dea9d60d4f883</originalsourceid><addsrcrecordid>eNqFkFtLHDEUgEOp1FX7EyoDBdGH0ZPLTJKnUhZvoC308hyymTNr7G6yJjOC_96suyj0xacD53zn9hHyhcIpBdqe_Qal27plkh8DOwGQVNX8A5lQ0LIWVOuPZPKK7JK9nO8BqGg0_UR2KYOWAZUTcnVr5wEH76pfmGOwwWF1vbRzH-ZV7KsfOKaSXVTTGAK6wceQKx-q4Q6rW-vsw1hiDP_w6YDs9HaR8fM27pO_F-d_plf1zc_L6-n3m9o1qhnKNaCwsY0T2vLZTOpedsBa3mmrZlqoUrFCO4eOlVMlawSTHVrdtdCJXim-T442c1cplu15MEufHS4WNmAcs6FKcC5gDX79D7yPYyq_FKYBLlsuGC1Us6Fcijkn7M0q-aVNT4aCWYs2L6LN2qIBZl5EG176DrfTx9kSu7eurdkCfNsAWGQ8ekwmO49Fb-dTEWm66N9Z8QxX-oun</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503763421</pqid></control><display><type>article</type><title>Magnetic Resonance Imaging of Neuronal Connections in the Macaque Monkey</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Saleem, Kadharbatcha S. ; Pauls, Jon M. ; Augath, Mark ; Trinath, Torsten ; Prause, Burkhard A. ; Hashikawa, Tsutomu ; Logothetis, Nikos K.</creator><creatorcontrib>Saleem, Kadharbatcha S. ; Pauls, Jon M. ; Augath, Mark ; Trinath, Torsten ; Prause, Burkhard A. ; Hashikawa, Tsutomu ; Logothetis, Nikos K.</creatorcontrib><description>Recently, an MRI-detectable, neuronal tract-tracing method in living animals was introduced that exploits the anterograde transport of manganese (Mn
2+). We present the results of experiments simultaneously tracing manganese chloride and wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) to evaluate the specificity of the former by tracing the neuronal connections of the basal ganglia of the monkey. Mn
2+ and WGA-HRP yielded remarkably similar and highly specific projection patterns. By showing the sequential transport of Mn
2+ from striatum to pallidum-substantia nigra and then to thalamus, we demonstrated MRI visualization of transport across at least one synapse in the CNS of the primate. Transsynaptic tract tracing in living primates will allow chronic studies of development and plasticity and provide valuable anatomical information for fMRI and electrophysiological experiments in primates.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/S0896-6273(02)00718-3</identifier><identifier>PMID: 12062017</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Axonal Transport - drug effects ; Axonal Transport - physiology ; Basal Ganglia - cytology ; Basal Ganglia - drug effects ; Basal Ganglia - physiology ; Behavior, Animal - drug effects ; Behavior, Animal - physiology ; Brain ; Brain Mapping - instrumentation ; Brain Mapping - methods ; Chlorides - adverse effects ; Globus Pallidus - cytology ; Globus Pallidus - drug effects ; Globus Pallidus - physiology ; Macaca mulatta - anatomy & histology ; Macaca mulatta - physiology ; Magnetic Resonance Imaging ; Manganese Compounds - adverse effects ; Motion pictures ; Neostriatum - cytology ; Neostriatum - drug effects ; Neostriatum - physiology ; Neural networks ; Neural Pathways - cytology ; Neural Pathways - drug effects ; Neural Pathways - physiology ; Neurons - cytology ; Neurons - drug effects ; Neurons - physiology ; Neurotoxins - adverse effects ; Parkinson's disease ; Prefrontal Cortex - cytology ; Prefrontal Cortex - drug effects ; Prefrontal Cortex - physiology ; Studies ; Substantia Nigra - cytology ; Substantia Nigra - physiology ; Thalamus - cytology ; Thalamus - drug effects ; Thalamus - physiology ; Time Factors ; Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate</subject><ispartof>Neuron (Cambridge, Mass.), 2002-05, Vol.34 (5), p.685-700</ispartof><rights>2002 Cell Press</rights><rights>Copyright Elsevier Limited May 30, 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-6208e5a5c49a3bb79f7d0263d9a8b948a5ca49ccec2591725427dea9d60d4f883</citedby><cites>FETCH-LOGICAL-c585t-6208e5a5c49a3bb79f7d0263d9a8b948a5ca49ccec2591725427dea9d60d4f883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0896-6273(02)00718-3$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12062017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saleem, Kadharbatcha S.</creatorcontrib><creatorcontrib>Pauls, Jon M.</creatorcontrib><creatorcontrib>Augath, Mark</creatorcontrib><creatorcontrib>Trinath, Torsten</creatorcontrib><creatorcontrib>Prause, Burkhard A.</creatorcontrib><creatorcontrib>Hashikawa, Tsutomu</creatorcontrib><creatorcontrib>Logothetis, Nikos K.</creatorcontrib><title>Magnetic Resonance Imaging of Neuronal Connections in the Macaque Monkey</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Recently, an MRI-detectable, neuronal tract-tracing method in living animals was introduced that exploits the anterograde transport of manganese (Mn
2+). We present the results of experiments simultaneously tracing manganese chloride and wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) to evaluate the specificity of the former by tracing the neuronal connections of the basal ganglia of the monkey. Mn
2+ and WGA-HRP yielded remarkably similar and highly specific projection patterns. By showing the sequential transport of Mn
2+ from striatum to pallidum-substantia nigra and then to thalamus, we demonstrated MRI visualization of transport across at least one synapse in the CNS of the primate. Transsynaptic tract tracing in living primates will allow chronic studies of development and plasticity and provide valuable anatomical information for fMRI and electrophysiological experiments in primates.</description><subject>Animals</subject><subject>Axonal Transport - drug effects</subject><subject>Axonal Transport - physiology</subject><subject>Basal Ganglia - cytology</subject><subject>Basal Ganglia - drug effects</subject><subject>Basal Ganglia - physiology</subject><subject>Behavior, Animal - drug effects</subject><subject>Behavior, Animal - physiology</subject><subject>Brain</subject><subject>Brain Mapping - instrumentation</subject><subject>Brain Mapping - methods</subject><subject>Chlorides - adverse effects</subject><subject>Globus Pallidus - cytology</subject><subject>Globus Pallidus - drug effects</subject><subject>Globus Pallidus - physiology</subject><subject>Macaca mulatta - anatomy & histology</subject><subject>Macaca mulatta - physiology</subject><subject>Magnetic Resonance Imaging</subject><subject>Manganese Compounds - adverse effects</subject><subject>Motion pictures</subject><subject>Neostriatum - cytology</subject><subject>Neostriatum - drug effects</subject><subject>Neostriatum - physiology</subject><subject>Neural networks</subject><subject>Neural Pathways - cytology</subject><subject>Neural Pathways - drug effects</subject><subject>Neural Pathways - physiology</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Neurotoxins - adverse effects</subject><subject>Parkinson's disease</subject><subject>Prefrontal Cortex - cytology</subject><subject>Prefrontal Cortex - drug effects</subject><subject>Prefrontal Cortex - physiology</subject><subject>Studies</subject><subject>Substantia Nigra - cytology</subject><subject>Substantia Nigra - physiology</subject><subject>Thalamus - cytology</subject><subject>Thalamus - drug effects</subject><subject>Thalamus - physiology</subject><subject>Time Factors</subject><subject>Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkFtLHDEUgEOp1FX7EyoDBdGH0ZPLTJKnUhZvoC308hyymTNr7G6yJjOC_96suyj0xacD53zn9hHyhcIpBdqe_Qal27plkh8DOwGQVNX8A5lQ0LIWVOuPZPKK7JK9nO8BqGg0_UR2KYOWAZUTcnVr5wEH76pfmGOwwWF1vbRzH-ZV7KsfOKaSXVTTGAK6wceQKx-q4Q6rW-vsw1hiDP_w6YDs9HaR8fM27pO_F-d_plf1zc_L6-n3m9o1qhnKNaCwsY0T2vLZTOpedsBa3mmrZlqoUrFCO4eOlVMlawSTHVrdtdCJXim-T442c1cplu15MEufHS4WNmAcs6FKcC5gDX79D7yPYyq_FKYBLlsuGC1Us6Fcijkn7M0q-aVNT4aCWYs2L6LN2qIBZl5EG176DrfTx9kSu7eurdkCfNsAWGQ8ekwmO49Fb-dTEWm66N9Z8QxX-oun</recordid><startdate>20020530</startdate><enddate>20020530</enddate><creator>Saleem, Kadharbatcha S.</creator><creator>Pauls, Jon M.</creator><creator>Augath, Mark</creator><creator>Trinath, Torsten</creator><creator>Prause, Burkhard A.</creator><creator>Hashikawa, Tsutomu</creator><creator>Logothetis, Nikos K.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope></search><sort><creationdate>20020530</creationdate><title>Magnetic Resonance Imaging of Neuronal Connections in the Macaque Monkey</title><author>Saleem, Kadharbatcha S. ; Pauls, Jon M. ; Augath, Mark ; Trinath, Torsten ; Prause, Burkhard A. ; Hashikawa, Tsutomu ; Logothetis, Nikos K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-6208e5a5c49a3bb79f7d0263d9a8b948a5ca49ccec2591725427dea9d60d4f883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Axonal Transport - drug effects</topic><topic>Axonal Transport - physiology</topic><topic>Basal Ganglia - cytology</topic><topic>Basal Ganglia - drug effects</topic><topic>Basal Ganglia - physiology</topic><topic>Behavior, Animal - drug effects</topic><topic>Behavior, Animal - physiology</topic><topic>Brain</topic><topic>Brain Mapping - instrumentation</topic><topic>Brain Mapping - methods</topic><topic>Chlorides - adverse effects</topic><topic>Globus Pallidus - cytology</topic><topic>Globus Pallidus - drug effects</topic><topic>Globus Pallidus - physiology</topic><topic>Macaca mulatta - anatomy & histology</topic><topic>Macaca mulatta - physiology</topic><topic>Magnetic Resonance Imaging</topic><topic>Manganese Compounds - adverse effects</topic><topic>Motion pictures</topic><topic>Neostriatum - cytology</topic><topic>Neostriatum - drug effects</topic><topic>Neostriatum - physiology</topic><topic>Neural networks</topic><topic>Neural Pathways - cytology</topic><topic>Neural Pathways - drug effects</topic><topic>Neural Pathways - physiology</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Neurotoxins - adverse effects</topic><topic>Parkinson's disease</topic><topic>Prefrontal Cortex - cytology</topic><topic>Prefrontal Cortex - drug effects</topic><topic>Prefrontal Cortex - physiology</topic><topic>Studies</topic><topic>Substantia Nigra - cytology</topic><topic>Substantia Nigra - physiology</topic><topic>Thalamus - cytology</topic><topic>Thalamus - drug effects</topic><topic>Thalamus - physiology</topic><topic>Time Factors</topic><topic>Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saleem, Kadharbatcha S.</creatorcontrib><creatorcontrib>Pauls, Jon M.</creatorcontrib><creatorcontrib>Augath, Mark</creatorcontrib><creatorcontrib>Trinath, Torsten</creatorcontrib><creatorcontrib>Prause, Burkhard A.</creatorcontrib><creatorcontrib>Hashikawa, Tsutomu</creatorcontrib><creatorcontrib>Logothetis, Nikos K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saleem, Kadharbatcha S.</au><au>Pauls, Jon M.</au><au>Augath, Mark</au><au>Trinath, Torsten</au><au>Prause, Burkhard A.</au><au>Hashikawa, Tsutomu</au><au>Logothetis, Nikos K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Resonance Imaging of Neuronal Connections in the Macaque Monkey</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2002-05-30</date><risdate>2002</risdate><volume>34</volume><issue>5</issue><spage>685</spage><epage>700</epage><pages>685-700</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Recently, an MRI-detectable, neuronal tract-tracing method in living animals was introduced that exploits the anterograde transport of manganese (Mn
2+). We present the results of experiments simultaneously tracing manganese chloride and wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) to evaluate the specificity of the former by tracing the neuronal connections of the basal ganglia of the monkey. Mn
2+ and WGA-HRP yielded remarkably similar and highly specific projection patterns. By showing the sequential transport of Mn
2+ from striatum to pallidum-substantia nigra and then to thalamus, we demonstrated MRI visualization of transport across at least one synapse in the CNS of the primate. Transsynaptic tract tracing in living primates will allow chronic studies of development and plasticity and provide valuable anatomical information for fMRI and electrophysiological experiments in primates.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12062017</pmid><doi>10.1016/S0896-6273(02)00718-3</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2002-05, Vol.34 (5), p.685-700 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_18433408 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | Animals Axonal Transport - drug effects Axonal Transport - physiology Basal Ganglia - cytology Basal Ganglia - drug effects Basal Ganglia - physiology Behavior, Animal - drug effects Behavior, Animal - physiology Brain Brain Mapping - instrumentation Brain Mapping - methods Chlorides - adverse effects Globus Pallidus - cytology Globus Pallidus - drug effects Globus Pallidus - physiology Macaca mulatta - anatomy & histology Macaca mulatta - physiology Magnetic Resonance Imaging Manganese Compounds - adverse effects Motion pictures Neostriatum - cytology Neostriatum - drug effects Neostriatum - physiology Neural networks Neural Pathways - cytology Neural Pathways - drug effects Neural Pathways - physiology Neurons - cytology Neurons - drug effects Neurons - physiology Neurotoxins - adverse effects Parkinson's disease Prefrontal Cortex - cytology Prefrontal Cortex - drug effects Prefrontal Cortex - physiology Studies Substantia Nigra - cytology Substantia Nigra - physiology Thalamus - cytology Thalamus - drug effects Thalamus - physiology Time Factors Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate |
title | Magnetic Resonance Imaging of Neuronal Connections in the Macaque Monkey |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Resonance%20Imaging%20of%20Neuronal%20Connections%20in%20the%20Macaque%20Monkey&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Saleem,%20Kadharbatcha%20S.&rft.date=2002-05-30&rft.volume=34&rft.issue=5&rft.spage=685&rft.epage=700&rft.pages=685-700&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/S0896-6273(02)00718-3&rft_dat=%3Cproquest_cross%3E3235359121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503763421&rft_id=info:pmid/12062017&rft_els_id=S0896627302007183&rfr_iscdi=true |