Lidocaine Administration Controls MicroRNAs Alterations Observed After Lung Ischemia–Reperfusion Injury
BACKGROUND:Ischemia–reperfusion injury (IRI) is associated with morbidity and mortality. MicroRNAs (miRNAs) have emerged as regulators of IRI, and they are involved in the pathogenesis of organ rejection. Lidocaine has proven anti-inflammatory activity in several tissues but its modulation of miRNAs...
Gespeichert in:
Veröffentlicht in: | Anesthesia and analgesia 2016-12, Vol.123 (6), p.1437-1447 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1447 |
---|---|
container_issue | 6 |
container_start_page | 1437 |
container_title | Anesthesia and analgesia |
container_volume | 123 |
creator | Rancan, Lisa Simón, Carlos Marchal-Duval, Emmeline Casanova, Javier Paredes, Sergio Damian Calvo, Alberto García, Cruz Rincón, David Turrero, Agustín Garutti, Ignacio Vara, Elena |
description | BACKGROUND:Ischemia–reperfusion injury (IRI) is associated with morbidity and mortality. MicroRNAs (miRNAs) have emerged as regulators of IRI, and they are involved in the pathogenesis of organ rejection. Lidocaine has proven anti-inflammatory activity in several tissues but its modulation of miRNAs has not been investigated. This work aims to investigate the involvement of miRNAs in lung IRI in a lung auto-transplantation model and to investigate the effect of lidocaine.
METHODS:Three groups (sham, control, and Lidocaine), each comprising 6 pigs, underwent a lung autotransplantation. All groups received the same anesthesia. In addition, animals of lidocaine group received a continuous intravenous administration of lidocaine (1.5 mg/kg/h) during surgery. Lung biopsies were taken before pulmonary artery clamp, before reperfusion, 30 minutes postreperfusion (Rp-30), and 60 minutes postreperfusion (Rp-60). Samples were analyzed for different miRNAs (miR-122, miR-145, miR-146a, miR-182, miR-107, miR-192, miR-16, miR-21, miR-126, miR-127, miR142-5p, miR152, miR155, miR-223, and let7) via the use of reverse-transcription quantitative polymerase chain reaction. Results were normalized with miR-103.
RESULTS:The expression of miR-127 and miR-16 did not increase after IRI. Let-7d, miR-21, miR-107, miR-126, miR-145, miR-146a, miR-182, and miR-192 significantly increased at the Rp-60 (control versus sham P < .001). miR-142-5p, miR-152, miR-155, and miR 223 significantly increased at the Rp-30 (control versus sham P < .001) and at the Rp-60 (control versus. sham P < .001). The administration of lidocaine was able to attenuate these alterations in a significant way (control versus Lidocaine P < .001).
CONCLUSIONS:Lung IRI caused dysregulation miRNA. The administration of lidocaine reduced significantly miRNAs alterations. |
doi_str_mv | 10.1213/ANE.0000000000001633 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1842603272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1842603272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4013-e6979e275b56d407e27c09c8d53260862f1ccc3268b62c6217223f815c0858b93</originalsourceid><addsrcrecordid>eNqFkMtO3DAUhq2KqjMF3gChLNkEfIlvy2g0pSNNGWnUrqPEOWE85DLYSRE73qFv2Cep0xkQYgHe-Jzj7_9t_widEXxJKGFX6c38Er9aRDD2CU0JpyKWXKsjNA1TFlOt9QR99X47QliJL2hCpZJYMjFFdmnLzuS2hSgtG9ta37u8t10bzbq2d13tox_WuG59k_oorXvYn_poVXhwv6GM0ioMo-XQ3kYLbzbQ2Pzv05817MBVgx-dFu12cI8n6HOV1x5OD_sx-vVt_nP2PV6urhezdBmbBBMWg9BSA5W84KJMsAylwdqokjMqwutpRYwxoVaFoEZQIilllSLcYMVVodkxutj77lx3P4Dvs8Z6A3Wdt9ANPiMqCUaMShrQZI-GD3rvoMp2zja5e8wIzsaQsxBy9jbkIDs_3DAUDZQvoudUA6D2wEM3Jubv6uEBXLaBvO43H3kn70j_c5zpmAaa0NDEo5Czfwa_mIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1842603272</pqid></control><display><type>article</type><title>Lidocaine Administration Controls MicroRNAs Alterations Observed After Lung Ischemia–Reperfusion Injury</title><source>MEDLINE</source><source>Journals@Ovid LWW Legacy Archive</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rancan, Lisa ; Simón, Carlos ; Marchal-Duval, Emmeline ; Casanova, Javier ; Paredes, Sergio Damian ; Calvo, Alberto ; García, Cruz ; Rincón, David ; Turrero, Agustín ; Garutti, Ignacio ; Vara, Elena</creator><creatorcontrib>Rancan, Lisa ; Simón, Carlos ; Marchal-Duval, Emmeline ; Casanova, Javier ; Paredes, Sergio Damian ; Calvo, Alberto ; García, Cruz ; Rincón, David ; Turrero, Agustín ; Garutti, Ignacio ; Vara, Elena</creatorcontrib><description>BACKGROUND:Ischemia–reperfusion injury (IRI) is associated with morbidity and mortality. MicroRNAs (miRNAs) have emerged as regulators of IRI, and they are involved in the pathogenesis of organ rejection. Lidocaine has proven anti-inflammatory activity in several tissues but its modulation of miRNAs has not been investigated. This work aims to investigate the involvement of miRNAs in lung IRI in a lung auto-transplantation model and to investigate the effect of lidocaine.
METHODS:Three groups (sham, control, and Lidocaine), each comprising 6 pigs, underwent a lung autotransplantation. All groups received the same anesthesia. In addition, animals of lidocaine group received a continuous intravenous administration of lidocaine (1.5 mg/kg/h) during surgery. Lung biopsies were taken before pulmonary artery clamp, before reperfusion, 30 minutes postreperfusion (Rp-30), and 60 minutes postreperfusion (Rp-60). Samples were analyzed for different miRNAs (miR-122, miR-145, miR-146a, miR-182, miR-107, miR-192, miR-16, miR-21, miR-126, miR-127, miR142-5p, miR152, miR155, miR-223, and let7) via the use of reverse-transcription quantitative polymerase chain reaction. Results were normalized with miR-103.
RESULTS:The expression of miR-127 and miR-16 did not increase after IRI. Let-7d, miR-21, miR-107, miR-126, miR-145, miR-146a, miR-182, and miR-192 significantly increased at the Rp-60 (control versus sham P < .001). miR-142-5p, miR-152, miR-155, and miR 223 significantly increased at the Rp-30 (control versus sham P < .001) and at the Rp-60 (control versus. sham P < .001). The administration of lidocaine was able to attenuate these alterations in a significant way (control versus Lidocaine P < .001).
CONCLUSIONS:Lung IRI caused dysregulation miRNA. The administration of lidocaine reduced significantly miRNAs alterations.</description><identifier>ISSN: 0003-2999</identifier><identifier>EISSN: 1526-7598</identifier><identifier>DOI: 10.1213/ANE.0000000000001633</identifier><identifier>PMID: 27870736</identifier><language>eng</language><publisher>United States: International Anesthesia Research Society</publisher><subject>Animals ; Apoptosis Regulatory Proteins - metabolism ; Disease Models, Animal ; Gene Expression Regulation ; Inflammation Mediators - metabolism ; Lidocaine - pharmacology ; Lung - drug effects ; Lung - metabolism ; Lung Injury - drug therapy ; Lung Injury - etiology ; Lung Injury - genetics ; Lung Injury - metabolism ; Lung Transplantation - adverse effects ; Male ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Reperfusion Injury - drug therapy ; Reperfusion Injury - etiology ; Reperfusion Injury - genetics ; Reperfusion Injury - metabolism ; Sus scrofa ; Time Factors ; Transplantation, Autologous - adverse effects</subject><ispartof>Anesthesia and analgesia, 2016-12, Vol.123 (6), p.1437-1447</ispartof><rights>International Anesthesia Research Society</rights><rights>2016 International Anesthesia Research Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4013-e6979e275b56d407e27c09c8d53260862f1ccc3268b62c6217223f815c0858b93</citedby><cites>FETCH-LOGICAL-c4013-e6979e275b56d407e27c09c8d53260862f1ccc3268b62c6217223f815c0858b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttp://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00000539-201612000-00015$$EHTML$$P50$$Gwolterskluwer$$H</linktohtml><link.rule.ids>314,776,780,4594,27903,27904,65209</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27870736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rancan, Lisa</creatorcontrib><creatorcontrib>Simón, Carlos</creatorcontrib><creatorcontrib>Marchal-Duval, Emmeline</creatorcontrib><creatorcontrib>Casanova, Javier</creatorcontrib><creatorcontrib>Paredes, Sergio Damian</creatorcontrib><creatorcontrib>Calvo, Alberto</creatorcontrib><creatorcontrib>García, Cruz</creatorcontrib><creatorcontrib>Rincón, David</creatorcontrib><creatorcontrib>Turrero, Agustín</creatorcontrib><creatorcontrib>Garutti, Ignacio</creatorcontrib><creatorcontrib>Vara, Elena</creatorcontrib><title>Lidocaine Administration Controls MicroRNAs Alterations Observed After Lung Ischemia–Reperfusion Injury</title><title>Anesthesia and analgesia</title><addtitle>Anesth Analg</addtitle><description>BACKGROUND:Ischemia–reperfusion injury (IRI) is associated with morbidity and mortality. MicroRNAs (miRNAs) have emerged as regulators of IRI, and they are involved in the pathogenesis of organ rejection. Lidocaine has proven anti-inflammatory activity in several tissues but its modulation of miRNAs has not been investigated. This work aims to investigate the involvement of miRNAs in lung IRI in a lung auto-transplantation model and to investigate the effect of lidocaine.
METHODS:Three groups (sham, control, and Lidocaine), each comprising 6 pigs, underwent a lung autotransplantation. All groups received the same anesthesia. In addition, animals of lidocaine group received a continuous intravenous administration of lidocaine (1.5 mg/kg/h) during surgery. Lung biopsies were taken before pulmonary artery clamp, before reperfusion, 30 minutes postreperfusion (Rp-30), and 60 minutes postreperfusion (Rp-60). Samples were analyzed for different miRNAs (miR-122, miR-145, miR-146a, miR-182, miR-107, miR-192, miR-16, miR-21, miR-126, miR-127, miR142-5p, miR152, miR155, miR-223, and let7) via the use of reverse-transcription quantitative polymerase chain reaction. Results were normalized with miR-103.
RESULTS:The expression of miR-127 and miR-16 did not increase after IRI. Let-7d, miR-21, miR-107, miR-126, miR-145, miR-146a, miR-182, and miR-192 significantly increased at the Rp-60 (control versus sham P < .001). miR-142-5p, miR-152, miR-155, and miR 223 significantly increased at the Rp-30 (control versus sham P < .001) and at the Rp-60 (control versus. sham P < .001). The administration of lidocaine was able to attenuate these alterations in a significant way (control versus Lidocaine P < .001).
CONCLUSIONS:Lung IRI caused dysregulation miRNA. The administration of lidocaine reduced significantly miRNAs alterations.</description><subject>Animals</subject><subject>Apoptosis Regulatory Proteins - metabolism</subject><subject>Disease Models, Animal</subject><subject>Gene Expression Regulation</subject><subject>Inflammation Mediators - metabolism</subject><subject>Lidocaine - pharmacology</subject><subject>Lung - drug effects</subject><subject>Lung - metabolism</subject><subject>Lung Injury - drug therapy</subject><subject>Lung Injury - etiology</subject><subject>Lung Injury - genetics</subject><subject>Lung Injury - metabolism</subject><subject>Lung Transplantation - adverse effects</subject><subject>Male</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Reperfusion Injury - drug therapy</subject><subject>Reperfusion Injury - etiology</subject><subject>Reperfusion Injury - genetics</subject><subject>Reperfusion Injury - metabolism</subject><subject>Sus scrofa</subject><subject>Time Factors</subject><subject>Transplantation, Autologous - adverse effects</subject><issn>0003-2999</issn><issn>1526-7598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtO3DAUhq2KqjMF3gChLNkEfIlvy2g0pSNNGWnUrqPEOWE85DLYSRE73qFv2Cep0xkQYgHe-Jzj7_9t_widEXxJKGFX6c38Er9aRDD2CU0JpyKWXKsjNA1TFlOt9QR99X47QliJL2hCpZJYMjFFdmnLzuS2hSgtG9ta37u8t10bzbq2d13tox_WuG59k_oorXvYn_poVXhwv6GM0ioMo-XQ3kYLbzbQ2Pzv05817MBVgx-dFu12cI8n6HOV1x5OD_sx-vVt_nP2PV6urhezdBmbBBMWg9BSA5W84KJMsAylwdqokjMqwutpRYwxoVaFoEZQIilllSLcYMVVodkxutj77lx3P4Dvs8Z6A3Wdt9ANPiMqCUaMShrQZI-GD3rvoMp2zja5e8wIzsaQsxBy9jbkIDs_3DAUDZQvoudUA6D2wEM3Jubv6uEBXLaBvO43H3kn70j_c5zpmAaa0NDEo5Czfwa_mIQ</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Rancan, Lisa</creator><creator>Simón, Carlos</creator><creator>Marchal-Duval, Emmeline</creator><creator>Casanova, Javier</creator><creator>Paredes, Sergio Damian</creator><creator>Calvo, Alberto</creator><creator>García, Cruz</creator><creator>Rincón, David</creator><creator>Turrero, Agustín</creator><creator>Garutti, Ignacio</creator><creator>Vara, Elena</creator><general>International Anesthesia Research Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161201</creationdate><title>Lidocaine Administration Controls MicroRNAs Alterations Observed After Lung Ischemia–Reperfusion Injury</title><author>Rancan, Lisa ; Simón, Carlos ; Marchal-Duval, Emmeline ; Casanova, Javier ; Paredes, Sergio Damian ; Calvo, Alberto ; García, Cruz ; Rincón, David ; Turrero, Agustín ; Garutti, Ignacio ; Vara, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4013-e6979e275b56d407e27c09c8d53260862f1ccc3268b62c6217223f815c0858b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Apoptosis Regulatory Proteins - metabolism</topic><topic>Disease Models, Animal</topic><topic>Gene Expression Regulation</topic><topic>Inflammation Mediators - metabolism</topic><topic>Lidocaine - pharmacology</topic><topic>Lung - drug effects</topic><topic>Lung - metabolism</topic><topic>Lung Injury - drug therapy</topic><topic>Lung Injury - etiology</topic><topic>Lung Injury - genetics</topic><topic>Lung Injury - metabolism</topic><topic>Lung Transplantation - adverse effects</topic><topic>Male</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Reperfusion Injury - drug therapy</topic><topic>Reperfusion Injury - etiology</topic><topic>Reperfusion Injury - genetics</topic><topic>Reperfusion Injury - metabolism</topic><topic>Sus scrofa</topic><topic>Time Factors</topic><topic>Transplantation, Autologous - adverse effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rancan, Lisa</creatorcontrib><creatorcontrib>Simón, Carlos</creatorcontrib><creatorcontrib>Marchal-Duval, Emmeline</creatorcontrib><creatorcontrib>Casanova, Javier</creatorcontrib><creatorcontrib>Paredes, Sergio Damian</creatorcontrib><creatorcontrib>Calvo, Alberto</creatorcontrib><creatorcontrib>García, Cruz</creatorcontrib><creatorcontrib>Rincón, David</creatorcontrib><creatorcontrib>Turrero, Agustín</creatorcontrib><creatorcontrib>Garutti, Ignacio</creatorcontrib><creatorcontrib>Vara, Elena</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Anesthesia and analgesia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rancan, Lisa</au><au>Simón, Carlos</au><au>Marchal-Duval, Emmeline</au><au>Casanova, Javier</au><au>Paredes, Sergio Damian</au><au>Calvo, Alberto</au><au>García, Cruz</au><au>Rincón, David</au><au>Turrero, Agustín</au><au>Garutti, Ignacio</au><au>Vara, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lidocaine Administration Controls MicroRNAs Alterations Observed After Lung Ischemia–Reperfusion Injury</atitle><jtitle>Anesthesia and analgesia</jtitle><addtitle>Anesth Analg</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>123</volume><issue>6</issue><spage>1437</spage><epage>1447</epage><pages>1437-1447</pages><issn>0003-2999</issn><eissn>1526-7598</eissn><abstract>BACKGROUND:Ischemia–reperfusion injury (IRI) is associated with morbidity and mortality. MicroRNAs (miRNAs) have emerged as regulators of IRI, and they are involved in the pathogenesis of organ rejection. Lidocaine has proven anti-inflammatory activity in several tissues but its modulation of miRNAs has not been investigated. This work aims to investigate the involvement of miRNAs in lung IRI in a lung auto-transplantation model and to investigate the effect of lidocaine.
METHODS:Three groups (sham, control, and Lidocaine), each comprising 6 pigs, underwent a lung autotransplantation. All groups received the same anesthesia. In addition, animals of lidocaine group received a continuous intravenous administration of lidocaine (1.5 mg/kg/h) during surgery. Lung biopsies were taken before pulmonary artery clamp, before reperfusion, 30 minutes postreperfusion (Rp-30), and 60 minutes postreperfusion (Rp-60). Samples were analyzed for different miRNAs (miR-122, miR-145, miR-146a, miR-182, miR-107, miR-192, miR-16, miR-21, miR-126, miR-127, miR142-5p, miR152, miR155, miR-223, and let7) via the use of reverse-transcription quantitative polymerase chain reaction. Results were normalized with miR-103.
RESULTS:The expression of miR-127 and miR-16 did not increase after IRI. Let-7d, miR-21, miR-107, miR-126, miR-145, miR-146a, miR-182, and miR-192 significantly increased at the Rp-60 (control versus sham P < .001). miR-142-5p, miR-152, miR-155, and miR 223 significantly increased at the Rp-30 (control versus sham P < .001) and at the Rp-60 (control versus. sham P < .001). The administration of lidocaine was able to attenuate these alterations in a significant way (control versus Lidocaine P < .001).
CONCLUSIONS:Lung IRI caused dysregulation miRNA. The administration of lidocaine reduced significantly miRNAs alterations.</abstract><cop>United States</cop><pub>International Anesthesia Research Society</pub><pmid>27870736</pmid><doi>10.1213/ANE.0000000000001633</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2999 |
ispartof | Anesthesia and analgesia, 2016-12, Vol.123 (6), p.1437-1447 |
issn | 0003-2999 1526-7598 |
language | eng |
recordid | cdi_proquest_miscellaneous_1842603272 |
source | MEDLINE; Journals@Ovid LWW Legacy Archive; EZB-FREE-00999 freely available EZB journals |
subjects | Animals Apoptosis Regulatory Proteins - metabolism Disease Models, Animal Gene Expression Regulation Inflammation Mediators - metabolism Lidocaine - pharmacology Lung - drug effects Lung - metabolism Lung Injury - drug therapy Lung Injury - etiology Lung Injury - genetics Lung Injury - metabolism Lung Transplantation - adverse effects Male MicroRNAs - genetics MicroRNAs - metabolism Reperfusion Injury - drug therapy Reperfusion Injury - etiology Reperfusion Injury - genetics Reperfusion Injury - metabolism Sus scrofa Time Factors Transplantation, Autologous - adverse effects |
title | Lidocaine Administration Controls MicroRNAs Alterations Observed After Lung Ischemia–Reperfusion Injury |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A46%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lidocaine%20Administration%20Controls%20MicroRNAs%20Alterations%20Observed%20After%20Lung%20Ischemia%E2%80%93Reperfusion%20Injury&rft.jtitle=Anesthesia%20and%20analgesia&rft.au=Rancan,%20Lisa&rft.date=2016-12-01&rft.volume=123&rft.issue=6&rft.spage=1437&rft.epage=1447&rft.pages=1437-1447&rft.issn=0003-2999&rft.eissn=1526-7598&rft_id=info:doi/10.1213/ANE.0000000000001633&rft_dat=%3Cproquest_cross%3E1842603272%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1842603272&rft_id=info:pmid/27870736&rfr_iscdi=true |