Lidocaine Administration Controls MicroRNAs Alterations Observed After Lung Ischemia–Reperfusion Injury

BACKGROUND:Ischemia–reperfusion injury (IRI) is associated with morbidity and mortality. MicroRNAs (miRNAs) have emerged as regulators of IRI, and they are involved in the pathogenesis of organ rejection. Lidocaine has proven anti-inflammatory activity in several tissues but its modulation of miRNAs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anesthesia and analgesia 2016-12, Vol.123 (6), p.1437-1447
Hauptverfasser: Rancan, Lisa, Simón, Carlos, Marchal-Duval, Emmeline, Casanova, Javier, Paredes, Sergio Damian, Calvo, Alberto, García, Cruz, Rincón, David, Turrero, Agustín, Garutti, Ignacio, Vara, Elena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1447
container_issue 6
container_start_page 1437
container_title Anesthesia and analgesia
container_volume 123
creator Rancan, Lisa
Simón, Carlos
Marchal-Duval, Emmeline
Casanova, Javier
Paredes, Sergio Damian
Calvo, Alberto
García, Cruz
Rincón, David
Turrero, Agustín
Garutti, Ignacio
Vara, Elena
description BACKGROUND:Ischemia–reperfusion injury (IRI) is associated with morbidity and mortality. MicroRNAs (miRNAs) have emerged as regulators of IRI, and they are involved in the pathogenesis of organ rejection. Lidocaine has proven anti-inflammatory activity in several tissues but its modulation of miRNAs has not been investigated. This work aims to investigate the involvement of miRNAs in lung IRI in a lung auto-transplantation model and to investigate the effect of lidocaine. METHODS:Three groups (sham, control, and Lidocaine), each comprising 6 pigs, underwent a lung autotransplantation. All groups received the same anesthesia. In addition, animals of lidocaine group received a continuous intravenous administration of lidocaine (1.5 mg/kg/h) during surgery. Lung biopsies were taken before pulmonary artery clamp, before reperfusion, 30 minutes postreperfusion (Rp-30), and 60 minutes postreperfusion (Rp-60). Samples were analyzed for different miRNAs (miR-122, miR-145, miR-146a, miR-182, miR-107, miR-192, miR-16, miR-21, miR-126, miR-127, miR142-5p, miR152, miR155, miR-223, and let7) via the use of reverse-transcription quantitative polymerase chain reaction. Results were normalized with miR-103. RESULTS:The expression of miR-127 and miR-16 did not increase after IRI. Let-7d, miR-21, miR-107, miR-126, miR-145, miR-146a, miR-182, and miR-192 significantly increased at the Rp-60 (control versus sham P < .001). miR-142-5p, miR-152, miR-155, and miR 223 significantly increased at the Rp-30 (control versus sham P < .001) and at the Rp-60 (control versus. sham P < .001). The administration of lidocaine was able to attenuate these alterations in a significant way (control versus Lidocaine P < .001). CONCLUSIONS:Lung IRI caused dysregulation miRNA. The administration of lidocaine reduced significantly miRNAs alterations.
doi_str_mv 10.1213/ANE.0000000000001633
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1842603272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1842603272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4013-e6979e275b56d407e27c09c8d53260862f1ccc3268b62c6217223f815c0858b93</originalsourceid><addsrcrecordid>eNqFkMtO3DAUhq2KqjMF3gChLNkEfIlvy2g0pSNNGWnUrqPEOWE85DLYSRE73qFv2Cep0xkQYgHe-Jzj7_9t_widEXxJKGFX6c38Er9aRDD2CU0JpyKWXKsjNA1TFlOt9QR99X47QliJL2hCpZJYMjFFdmnLzuS2hSgtG9ta37u8t10bzbq2d13tox_WuG59k_oorXvYn_poVXhwv6GM0ioMo-XQ3kYLbzbQ2Pzv05817MBVgx-dFu12cI8n6HOV1x5OD_sx-vVt_nP2PV6urhezdBmbBBMWg9BSA5W84KJMsAylwdqokjMqwutpRYwxoVaFoEZQIilllSLcYMVVodkxutj77lx3P4Dvs8Z6A3Wdt9ANPiMqCUaMShrQZI-GD3rvoMp2zja5e8wIzsaQsxBy9jbkIDs_3DAUDZQvoudUA6D2wEM3Jubv6uEBXLaBvO43H3kn70j_c5zpmAaa0NDEo5Czfwa_mIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1842603272</pqid></control><display><type>article</type><title>Lidocaine Administration Controls MicroRNAs Alterations Observed After Lung Ischemia–Reperfusion Injury</title><source>MEDLINE</source><source>Journals@Ovid LWW Legacy Archive</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rancan, Lisa ; Simón, Carlos ; Marchal-Duval, Emmeline ; Casanova, Javier ; Paredes, Sergio Damian ; Calvo, Alberto ; García, Cruz ; Rincón, David ; Turrero, Agustín ; Garutti, Ignacio ; Vara, Elena</creator><creatorcontrib>Rancan, Lisa ; Simón, Carlos ; Marchal-Duval, Emmeline ; Casanova, Javier ; Paredes, Sergio Damian ; Calvo, Alberto ; García, Cruz ; Rincón, David ; Turrero, Agustín ; Garutti, Ignacio ; Vara, Elena</creatorcontrib><description>BACKGROUND:Ischemia–reperfusion injury (IRI) is associated with morbidity and mortality. MicroRNAs (miRNAs) have emerged as regulators of IRI, and they are involved in the pathogenesis of organ rejection. Lidocaine has proven anti-inflammatory activity in several tissues but its modulation of miRNAs has not been investigated. This work aims to investigate the involvement of miRNAs in lung IRI in a lung auto-transplantation model and to investigate the effect of lidocaine. METHODS:Three groups (sham, control, and Lidocaine), each comprising 6 pigs, underwent a lung autotransplantation. All groups received the same anesthesia. In addition, animals of lidocaine group received a continuous intravenous administration of lidocaine (1.5 mg/kg/h) during surgery. Lung biopsies were taken before pulmonary artery clamp, before reperfusion, 30 minutes postreperfusion (Rp-30), and 60 minutes postreperfusion (Rp-60). Samples were analyzed for different miRNAs (miR-122, miR-145, miR-146a, miR-182, miR-107, miR-192, miR-16, miR-21, miR-126, miR-127, miR142-5p, miR152, miR155, miR-223, and let7) via the use of reverse-transcription quantitative polymerase chain reaction. Results were normalized with miR-103. RESULTS:The expression of miR-127 and miR-16 did not increase after IRI. Let-7d, miR-21, miR-107, miR-126, miR-145, miR-146a, miR-182, and miR-192 significantly increased at the Rp-60 (control versus sham P &lt; .001). miR-142-5p, miR-152, miR-155, and miR 223 significantly increased at the Rp-30 (control versus sham P &lt; .001) and at the Rp-60 (control versus. sham P &lt; .001). The administration of lidocaine was able to attenuate these alterations in a significant way (control versus Lidocaine P &lt; .001). CONCLUSIONS:Lung IRI caused dysregulation miRNA. The administration of lidocaine reduced significantly miRNAs alterations.</description><identifier>ISSN: 0003-2999</identifier><identifier>EISSN: 1526-7598</identifier><identifier>DOI: 10.1213/ANE.0000000000001633</identifier><identifier>PMID: 27870736</identifier><language>eng</language><publisher>United States: International Anesthesia Research Society</publisher><subject>Animals ; Apoptosis Regulatory Proteins - metabolism ; Disease Models, Animal ; Gene Expression Regulation ; Inflammation Mediators - metabolism ; Lidocaine - pharmacology ; Lung - drug effects ; Lung - metabolism ; Lung Injury - drug therapy ; Lung Injury - etiology ; Lung Injury - genetics ; Lung Injury - metabolism ; Lung Transplantation - adverse effects ; Male ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Reperfusion Injury - drug therapy ; Reperfusion Injury - etiology ; Reperfusion Injury - genetics ; Reperfusion Injury - metabolism ; Sus scrofa ; Time Factors ; Transplantation, Autologous - adverse effects</subject><ispartof>Anesthesia and analgesia, 2016-12, Vol.123 (6), p.1437-1447</ispartof><rights>International Anesthesia Research Society</rights><rights>2016 International Anesthesia Research Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4013-e6979e275b56d407e27c09c8d53260862f1ccc3268b62c6217223f815c0858b93</citedby><cites>FETCH-LOGICAL-c4013-e6979e275b56d407e27c09c8d53260862f1ccc3268b62c6217223f815c0858b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttp://ovidsp.ovid.com/ovidweb.cgi?T=JS&amp;NEWS=n&amp;CSC=Y&amp;PAGE=fulltext&amp;D=ovft&amp;AN=00000539-201612000-00015$$EHTML$$P50$$Gwolterskluwer$$H</linktohtml><link.rule.ids>314,776,780,4594,27903,27904,65209</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27870736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rancan, Lisa</creatorcontrib><creatorcontrib>Simón, Carlos</creatorcontrib><creatorcontrib>Marchal-Duval, Emmeline</creatorcontrib><creatorcontrib>Casanova, Javier</creatorcontrib><creatorcontrib>Paredes, Sergio Damian</creatorcontrib><creatorcontrib>Calvo, Alberto</creatorcontrib><creatorcontrib>García, Cruz</creatorcontrib><creatorcontrib>Rincón, David</creatorcontrib><creatorcontrib>Turrero, Agustín</creatorcontrib><creatorcontrib>Garutti, Ignacio</creatorcontrib><creatorcontrib>Vara, Elena</creatorcontrib><title>Lidocaine Administration Controls MicroRNAs Alterations Observed After Lung Ischemia–Reperfusion Injury</title><title>Anesthesia and analgesia</title><addtitle>Anesth Analg</addtitle><description>BACKGROUND:Ischemia–reperfusion injury (IRI) is associated with morbidity and mortality. MicroRNAs (miRNAs) have emerged as regulators of IRI, and they are involved in the pathogenesis of organ rejection. Lidocaine has proven anti-inflammatory activity in several tissues but its modulation of miRNAs has not been investigated. This work aims to investigate the involvement of miRNAs in lung IRI in a lung auto-transplantation model and to investigate the effect of lidocaine. METHODS:Three groups (sham, control, and Lidocaine), each comprising 6 pigs, underwent a lung autotransplantation. All groups received the same anesthesia. In addition, animals of lidocaine group received a continuous intravenous administration of lidocaine (1.5 mg/kg/h) during surgery. Lung biopsies were taken before pulmonary artery clamp, before reperfusion, 30 minutes postreperfusion (Rp-30), and 60 minutes postreperfusion (Rp-60). Samples were analyzed for different miRNAs (miR-122, miR-145, miR-146a, miR-182, miR-107, miR-192, miR-16, miR-21, miR-126, miR-127, miR142-5p, miR152, miR155, miR-223, and let7) via the use of reverse-transcription quantitative polymerase chain reaction. Results were normalized with miR-103. RESULTS:The expression of miR-127 and miR-16 did not increase after IRI. Let-7d, miR-21, miR-107, miR-126, miR-145, miR-146a, miR-182, and miR-192 significantly increased at the Rp-60 (control versus sham P &lt; .001). miR-142-5p, miR-152, miR-155, and miR 223 significantly increased at the Rp-30 (control versus sham P &lt; .001) and at the Rp-60 (control versus. sham P &lt; .001). The administration of lidocaine was able to attenuate these alterations in a significant way (control versus Lidocaine P &lt; .001). CONCLUSIONS:Lung IRI caused dysregulation miRNA. The administration of lidocaine reduced significantly miRNAs alterations.</description><subject>Animals</subject><subject>Apoptosis Regulatory Proteins - metabolism</subject><subject>Disease Models, Animal</subject><subject>Gene Expression Regulation</subject><subject>Inflammation Mediators - metabolism</subject><subject>Lidocaine - pharmacology</subject><subject>Lung - drug effects</subject><subject>Lung - metabolism</subject><subject>Lung Injury - drug therapy</subject><subject>Lung Injury - etiology</subject><subject>Lung Injury - genetics</subject><subject>Lung Injury - metabolism</subject><subject>Lung Transplantation - adverse effects</subject><subject>Male</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Reperfusion Injury - drug therapy</subject><subject>Reperfusion Injury - etiology</subject><subject>Reperfusion Injury - genetics</subject><subject>Reperfusion Injury - metabolism</subject><subject>Sus scrofa</subject><subject>Time Factors</subject><subject>Transplantation, Autologous - adverse effects</subject><issn>0003-2999</issn><issn>1526-7598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtO3DAUhq2KqjMF3gChLNkEfIlvy2g0pSNNGWnUrqPEOWE85DLYSRE73qFv2Cep0xkQYgHe-Jzj7_9t_widEXxJKGFX6c38Er9aRDD2CU0JpyKWXKsjNA1TFlOt9QR99X47QliJL2hCpZJYMjFFdmnLzuS2hSgtG9ta37u8t10bzbq2d13tox_WuG59k_oorXvYn_poVXhwv6GM0ioMo-XQ3kYLbzbQ2Pzv05817MBVgx-dFu12cI8n6HOV1x5OD_sx-vVt_nP2PV6urhezdBmbBBMWg9BSA5W84KJMsAylwdqokjMqwutpRYwxoVaFoEZQIilllSLcYMVVodkxutj77lx3P4Dvs8Z6A3Wdt9ANPiMqCUaMShrQZI-GD3rvoMp2zja5e8wIzsaQsxBy9jbkIDs_3DAUDZQvoudUA6D2wEM3Jubv6uEBXLaBvO43H3kn70j_c5zpmAaa0NDEo5Czfwa_mIQ</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Rancan, Lisa</creator><creator>Simón, Carlos</creator><creator>Marchal-Duval, Emmeline</creator><creator>Casanova, Javier</creator><creator>Paredes, Sergio Damian</creator><creator>Calvo, Alberto</creator><creator>García, Cruz</creator><creator>Rincón, David</creator><creator>Turrero, Agustín</creator><creator>Garutti, Ignacio</creator><creator>Vara, Elena</creator><general>International Anesthesia Research Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161201</creationdate><title>Lidocaine Administration Controls MicroRNAs Alterations Observed After Lung Ischemia–Reperfusion Injury</title><author>Rancan, Lisa ; Simón, Carlos ; Marchal-Duval, Emmeline ; Casanova, Javier ; Paredes, Sergio Damian ; Calvo, Alberto ; García, Cruz ; Rincón, David ; Turrero, Agustín ; Garutti, Ignacio ; Vara, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4013-e6979e275b56d407e27c09c8d53260862f1ccc3268b62c6217223f815c0858b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Apoptosis Regulatory Proteins - metabolism</topic><topic>Disease Models, Animal</topic><topic>Gene Expression Regulation</topic><topic>Inflammation Mediators - metabolism</topic><topic>Lidocaine - pharmacology</topic><topic>Lung - drug effects</topic><topic>Lung - metabolism</topic><topic>Lung Injury - drug therapy</topic><topic>Lung Injury - etiology</topic><topic>Lung Injury - genetics</topic><topic>Lung Injury - metabolism</topic><topic>Lung Transplantation - adverse effects</topic><topic>Male</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Reperfusion Injury - drug therapy</topic><topic>Reperfusion Injury - etiology</topic><topic>Reperfusion Injury - genetics</topic><topic>Reperfusion Injury - metabolism</topic><topic>Sus scrofa</topic><topic>Time Factors</topic><topic>Transplantation, Autologous - adverse effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rancan, Lisa</creatorcontrib><creatorcontrib>Simón, Carlos</creatorcontrib><creatorcontrib>Marchal-Duval, Emmeline</creatorcontrib><creatorcontrib>Casanova, Javier</creatorcontrib><creatorcontrib>Paredes, Sergio Damian</creatorcontrib><creatorcontrib>Calvo, Alberto</creatorcontrib><creatorcontrib>García, Cruz</creatorcontrib><creatorcontrib>Rincón, David</creatorcontrib><creatorcontrib>Turrero, Agustín</creatorcontrib><creatorcontrib>Garutti, Ignacio</creatorcontrib><creatorcontrib>Vara, Elena</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Anesthesia and analgesia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rancan, Lisa</au><au>Simón, Carlos</au><au>Marchal-Duval, Emmeline</au><au>Casanova, Javier</au><au>Paredes, Sergio Damian</au><au>Calvo, Alberto</au><au>García, Cruz</au><au>Rincón, David</au><au>Turrero, Agustín</au><au>Garutti, Ignacio</au><au>Vara, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lidocaine Administration Controls MicroRNAs Alterations Observed After Lung Ischemia–Reperfusion Injury</atitle><jtitle>Anesthesia and analgesia</jtitle><addtitle>Anesth Analg</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>123</volume><issue>6</issue><spage>1437</spage><epage>1447</epage><pages>1437-1447</pages><issn>0003-2999</issn><eissn>1526-7598</eissn><abstract>BACKGROUND:Ischemia–reperfusion injury (IRI) is associated with morbidity and mortality. MicroRNAs (miRNAs) have emerged as regulators of IRI, and they are involved in the pathogenesis of organ rejection. Lidocaine has proven anti-inflammatory activity in several tissues but its modulation of miRNAs has not been investigated. This work aims to investigate the involvement of miRNAs in lung IRI in a lung auto-transplantation model and to investigate the effect of lidocaine. METHODS:Three groups (sham, control, and Lidocaine), each comprising 6 pigs, underwent a lung autotransplantation. All groups received the same anesthesia. In addition, animals of lidocaine group received a continuous intravenous administration of lidocaine (1.5 mg/kg/h) during surgery. Lung biopsies were taken before pulmonary artery clamp, before reperfusion, 30 minutes postreperfusion (Rp-30), and 60 minutes postreperfusion (Rp-60). Samples were analyzed for different miRNAs (miR-122, miR-145, miR-146a, miR-182, miR-107, miR-192, miR-16, miR-21, miR-126, miR-127, miR142-5p, miR152, miR155, miR-223, and let7) via the use of reverse-transcription quantitative polymerase chain reaction. Results were normalized with miR-103. RESULTS:The expression of miR-127 and miR-16 did not increase after IRI. Let-7d, miR-21, miR-107, miR-126, miR-145, miR-146a, miR-182, and miR-192 significantly increased at the Rp-60 (control versus sham P &lt; .001). miR-142-5p, miR-152, miR-155, and miR 223 significantly increased at the Rp-30 (control versus sham P &lt; .001) and at the Rp-60 (control versus. sham P &lt; .001). The administration of lidocaine was able to attenuate these alterations in a significant way (control versus Lidocaine P &lt; .001). CONCLUSIONS:Lung IRI caused dysregulation miRNA. The administration of lidocaine reduced significantly miRNAs alterations.</abstract><cop>United States</cop><pub>International Anesthesia Research Society</pub><pmid>27870736</pmid><doi>10.1213/ANE.0000000000001633</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2999
ispartof Anesthesia and analgesia, 2016-12, Vol.123 (6), p.1437-1447
issn 0003-2999
1526-7598
language eng
recordid cdi_proquest_miscellaneous_1842603272
source MEDLINE; Journals@Ovid LWW Legacy Archive; EZB-FREE-00999 freely available EZB journals
subjects Animals
Apoptosis Regulatory Proteins - metabolism
Disease Models, Animal
Gene Expression Regulation
Inflammation Mediators - metabolism
Lidocaine - pharmacology
Lung - drug effects
Lung - metabolism
Lung Injury - drug therapy
Lung Injury - etiology
Lung Injury - genetics
Lung Injury - metabolism
Lung Transplantation - adverse effects
Male
MicroRNAs - genetics
MicroRNAs - metabolism
Reperfusion Injury - drug therapy
Reperfusion Injury - etiology
Reperfusion Injury - genetics
Reperfusion Injury - metabolism
Sus scrofa
Time Factors
Transplantation, Autologous - adverse effects
title Lidocaine Administration Controls MicroRNAs Alterations Observed After Lung Ischemia–Reperfusion Injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A46%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lidocaine%20Administration%20Controls%20MicroRNAs%20Alterations%20Observed%20After%20Lung%20Ischemia%E2%80%93Reperfusion%20Injury&rft.jtitle=Anesthesia%20and%20analgesia&rft.au=Rancan,%20Lisa&rft.date=2016-12-01&rft.volume=123&rft.issue=6&rft.spage=1437&rft.epage=1447&rft.pages=1437-1447&rft.issn=0003-2999&rft.eissn=1526-7598&rft_id=info:doi/10.1213/ANE.0000000000001633&rft_dat=%3Cproquest_cross%3E1842603272%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1842603272&rft_id=info:pmid/27870736&rfr_iscdi=true