Scaling relationships for nonadiabatic energy relaxation times in warm dense matter: toward understanding the equation of state
Understanding the dynamics of electron-ion energy transfer in warm dense (WD) matter is important to the measurement of equation of state (EOS) properties and for understanding the energy balance in dynamic simulations. In this work, we present a comprehensive investigation of nonadiabatic electron...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2016-11, Vol.18 (47), p.32466-32476 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 32476 |
---|---|
container_issue | 47 |
container_start_page | 32466 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 18 |
creator | Pradhan, Ekadashi Magyar, Rudolph J Akimov, Alexey V |
description | Understanding the dynamics of electron-ion energy transfer in warm dense (WD) matter is important to the measurement of equation of state (EOS) properties and for understanding the energy balance in dynamic simulations. In this work, we present a comprehensive investigation of nonadiabatic electron relaxation and thermal excitation dynamics in aluminum under high pressure and temperature. Using quantum-classical trajectory surface hopping approaches, we examine the role of nonadiabatic couplings and electronic decoherence in electron-nuclear energy transfer in WD aluminum. The computed timescales range from 400 fs to 4.0 ps and are consistent with existing experimental studies. We have derived general scaling relationships between macroscopic parameters of WD systems such as temperature or mass density and the timescales of energy redistribution between quantum and classical degrees of freedom. The scaling laws are supported by computational results. We show that electronic decoherence plays essential role and can change the functional dependencies qualitatively. The established scaling relationships can be of use in modelling of WD matter.
The dependence of nonadiabatic ion-electron energy transfer rates in warm dense aluminum on the mass density and temperature with decoherence changing this relationship qualitatively. |
doi_str_mv | 10.1039/c6cp06827h |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1842555738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1864581436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-8cf4bf228121647f0d5ff018f084cada589900175db898cab611b420fb73fa8e3</originalsourceid><addsrcrecordid>eNqNkc1r3DAQxUVp6CbbXHpvUW-hsKkkW7KcW1mSbiCQQJuzkaXRroMtO5JMu6f869F-ZHMLOc0w7zczPB5CXyg5pyQrf2qhByIkK1Yf0DHNRTYricw_HvpCTNBJCA-EEMpp9glNWCFFyXhxjJ7-aNU2bok9tCo2vQurZgjY9h673inTqDqNNQYHfrneUv-3HI5NBwE3Dv9TvsMGXADcqRjBX-DYp6HBozPgQ1TObD7EFWB4HHfbvcVJiPAZHVnVBjjd1ym6v7r8O1_Mbm5_X89_3cw0K2WcSW3z2jImKaMiLywx3FpCpU1GtTKKy7JM7gpuallKrWpBaZ0zYusis0pCNkVnu7uD7x9HCLHqmqChbZWDfgwVlSLnkuaZeAeaM855kcmE_tih2vcheLDV4JtO-XVFSbXJppqL-d02m0WCv-3vjnUH5oC-hJGArzvAB31QX8NN-ve39GowNnsG-22hWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1842555738</pqid></control><display><type>article</type><title>Scaling relationships for nonadiabatic energy relaxation times in warm dense matter: toward understanding the equation of state</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Pradhan, Ekadashi ; Magyar, Rudolph J ; Akimov, Alexey V</creator><creatorcontrib>Pradhan, Ekadashi ; Magyar, Rudolph J ; Akimov, Alexey V</creatorcontrib><description>Understanding the dynamics of electron-ion energy transfer in warm dense (WD) matter is important to the measurement of equation of state (EOS) properties and for understanding the energy balance in dynamic simulations. In this work, we present a comprehensive investigation of nonadiabatic electron relaxation and thermal excitation dynamics in aluminum under high pressure and temperature. Using quantum-classical trajectory surface hopping approaches, we examine the role of nonadiabatic couplings and electronic decoherence in electron-nuclear energy transfer in WD aluminum. The computed timescales range from 400 fs to 4.0 ps and are consistent with existing experimental studies. We have derived general scaling relationships between macroscopic parameters of WD systems such as temperature or mass density and the timescales of energy redistribution between quantum and classical degrees of freedom. The scaling laws are supported by computational results. We show that electronic decoherence plays essential role and can change the functional dependencies qualitatively. The established scaling relationships can be of use in modelling of WD matter.
The dependence of nonadiabatic ion-electron energy transfer rates in warm dense aluminum on the mass density and temperature with decoherence changing this relationship qualitatively.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c6cp06827h</identifier><identifier>PMID: 27869257</identifier><language>eng</language><publisher>England</publisher><subject>Aluminum ; Dynamics ; Electronics ; Energy transfer ; Equations of state ; Mathematical models ; Scaling ; Time</subject><ispartof>Physical chemistry chemical physics : PCCP, 2016-11, Vol.18 (47), p.32466-32476</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-8cf4bf228121647f0d5ff018f084cada589900175db898cab611b420fb73fa8e3</citedby><cites>FETCH-LOGICAL-c298t-8cf4bf228121647f0d5ff018f084cada589900175db898cab611b420fb73fa8e3</cites><orcidid>0000-0002-7815-3731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27869257$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pradhan, Ekadashi</creatorcontrib><creatorcontrib>Magyar, Rudolph J</creatorcontrib><creatorcontrib>Akimov, Alexey V</creatorcontrib><title>Scaling relationships for nonadiabatic energy relaxation times in warm dense matter: toward understanding the equation of state</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Understanding the dynamics of electron-ion energy transfer in warm dense (WD) matter is important to the measurement of equation of state (EOS) properties and for understanding the energy balance in dynamic simulations. In this work, we present a comprehensive investigation of nonadiabatic electron relaxation and thermal excitation dynamics in aluminum under high pressure and temperature. Using quantum-classical trajectory surface hopping approaches, we examine the role of nonadiabatic couplings and electronic decoherence in electron-nuclear energy transfer in WD aluminum. The computed timescales range from 400 fs to 4.0 ps and are consistent with existing experimental studies. We have derived general scaling relationships between macroscopic parameters of WD systems such as temperature or mass density and the timescales of energy redistribution between quantum and classical degrees of freedom. The scaling laws are supported by computational results. We show that electronic decoherence plays essential role and can change the functional dependencies qualitatively. The established scaling relationships can be of use in modelling of WD matter.
The dependence of nonadiabatic ion-electron energy transfer rates in warm dense aluminum on the mass density and temperature with decoherence changing this relationship qualitatively.</description><subject>Aluminum</subject><subject>Dynamics</subject><subject>Electronics</subject><subject>Energy transfer</subject><subject>Equations of state</subject><subject>Mathematical models</subject><subject>Scaling</subject><subject>Time</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkc1r3DAQxUVp6CbbXHpvUW-hsKkkW7KcW1mSbiCQQJuzkaXRroMtO5JMu6f869F-ZHMLOc0w7zczPB5CXyg5pyQrf2qhByIkK1Yf0DHNRTYricw_HvpCTNBJCA-EEMpp9glNWCFFyXhxjJ7-aNU2bok9tCo2vQurZgjY9h673inTqDqNNQYHfrneUv-3HI5NBwE3Dv9TvsMGXADcqRjBX-DYp6HBozPgQ1TObD7EFWB4HHfbvcVJiPAZHVnVBjjd1ym6v7r8O1_Mbm5_X89_3cw0K2WcSW3z2jImKaMiLywx3FpCpU1GtTKKy7JM7gpuallKrWpBaZ0zYusis0pCNkVnu7uD7x9HCLHqmqChbZWDfgwVlSLnkuaZeAeaM855kcmE_tih2vcheLDV4JtO-XVFSbXJppqL-d02m0WCv-3vjnUH5oC-hJGArzvAB31QX8NN-ve39GowNnsG-22hWg</recordid><startdate>20161130</startdate><enddate>20161130</enddate><creator>Pradhan, Ekadashi</creator><creator>Magyar, Rudolph J</creator><creator>Akimov, Alexey V</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7815-3731</orcidid></search><sort><creationdate>20161130</creationdate><title>Scaling relationships for nonadiabatic energy relaxation times in warm dense matter: toward understanding the equation of state</title><author>Pradhan, Ekadashi ; Magyar, Rudolph J ; Akimov, Alexey V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-8cf4bf228121647f0d5ff018f084cada589900175db898cab611b420fb73fa8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aluminum</topic><topic>Dynamics</topic><topic>Electronics</topic><topic>Energy transfer</topic><topic>Equations of state</topic><topic>Mathematical models</topic><topic>Scaling</topic><topic>Time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pradhan, Ekadashi</creatorcontrib><creatorcontrib>Magyar, Rudolph J</creatorcontrib><creatorcontrib>Akimov, Alexey V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pradhan, Ekadashi</au><au>Magyar, Rudolph J</au><au>Akimov, Alexey V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling relationships for nonadiabatic energy relaxation times in warm dense matter: toward understanding the equation of state</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2016-11-30</date><risdate>2016</risdate><volume>18</volume><issue>47</issue><spage>32466</spage><epage>32476</epage><pages>32466-32476</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Understanding the dynamics of electron-ion energy transfer in warm dense (WD) matter is important to the measurement of equation of state (EOS) properties and for understanding the energy balance in dynamic simulations. In this work, we present a comprehensive investigation of nonadiabatic electron relaxation and thermal excitation dynamics in aluminum under high pressure and temperature. Using quantum-classical trajectory surface hopping approaches, we examine the role of nonadiabatic couplings and electronic decoherence in electron-nuclear energy transfer in WD aluminum. The computed timescales range from 400 fs to 4.0 ps and are consistent with existing experimental studies. We have derived general scaling relationships between macroscopic parameters of WD systems such as temperature or mass density and the timescales of energy redistribution between quantum and classical degrees of freedom. The scaling laws are supported by computational results. We show that electronic decoherence plays essential role and can change the functional dependencies qualitatively. The established scaling relationships can be of use in modelling of WD matter.
The dependence of nonadiabatic ion-electron energy transfer rates in warm dense aluminum on the mass density and temperature with decoherence changing this relationship qualitatively.</abstract><cop>England</cop><pmid>27869257</pmid><doi>10.1039/c6cp06827h</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7815-3731</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2016-11, Vol.18 (47), p.32466-32476 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_1842555738 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Aluminum Dynamics Electronics Energy transfer Equations of state Mathematical models Scaling Time |
title | Scaling relationships for nonadiabatic energy relaxation times in warm dense matter: toward understanding the equation of state |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A56%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20relationships%20for%20nonadiabatic%20energy%20relaxation%20times%20in%20warm%20dense%20matter:%20toward%20understanding%20the%20equation%20of%20state&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Pradhan,%20Ekadashi&rft.date=2016-11-30&rft.volume=18&rft.issue=47&rft.spage=32466&rft.epage=32476&rft.pages=32466-32476&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c6cp06827h&rft_dat=%3Cproquest_rsc_p%3E1864581436%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1842555738&rft_id=info:pmid/27869257&rfr_iscdi=true |