Glycidol: an Hydroxyl-Containing Epoxide Playing the Double Role of Substrate and Catalyst for CO2 Cycloaddition Reactions
Glycidol is converted into glycerol carbonate (GC) by coupling with CO2 in the presence of tetrabutylammonium bromide (TBAB) under mild reaction conditions (T=60 °C, PCO2 =1 MPa) in excellent yields (99 %) and short reaction time (t=3 h). The unusual reactivity of this substrate compared to other ep...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2016-12, Vol.9 (24), p.3457-3464 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3464 |
---|---|
container_issue | 24 |
container_start_page | 3457 |
container_title | ChemSusChem |
container_volume | 9 |
creator | Della Monica, Francesco Buonerba, Antonio Grassi, Alfonso Capacchione, Carmine Milione, Stefano |
description | Glycidol is converted into glycerol carbonate (GC) by coupling with CO2 in the presence of tetrabutylammonium bromide (TBAB) under mild reaction conditions (T=60 °C, PCO2
=1 MPa) in excellent yields (99 %) and short reaction time (t=3 h). The unusual reactivity of this substrate compared to other epoxides, such as propylene oxide, under the same reaction conditions is clearly related to the presence of a hydroxyl functionality on the oxirane ring. Density functional theory calculations (DFT) supported by 1H NMR experiments reveal that the unique behavior of this substrate is a result of the formation of intermolecular hydrogen bonds into a dimeric structure, activating this molecule to nucleophilic attack, and allowing the formation of GC. Furthermore, the glycidol/TBAB catalytic system acts as an efficient organocatalyst for the cycloaddition of CO2 to various oxiranes.
Double duty: Glycydol is efficiently converted to glycerol carbonate by coupling with CO2 in the presence of tetrabutylammonium bromide under metal‐free, solvent free reaction conditions. Density functional theory calculations supported by 1H NMR experiments reveal that the unique behavior of this substrate is a result of the formation of intermolecular hydrogen bonds, activating this molecule to nucleophilic attack. |
doi_str_mv | 10.1002/cssc.201601154 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1842550734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4285352581</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3374-117ddc3340e706fa6d7726086e2593ab80dce1833af7c69007edae00f65101fa3</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhaMKpJbClbOlXrikHcexnXBDoWyrVhQaUHuzZm2nuLjxNnbEhl_fRIv2wGVmnvS90Whelr2ncEoBijMdoz4tgAqglJcH2RGtRJlzUd6_2s-MHmZvYnwEEFALcZT9XflJOxP8R4I9uZjMELaTz5vQJ3S96x_I-SZsnbHkm8dp0emXJZ_DuPaW3Ia5hI604zqmAZOddxjSYEI_xUS6MJDmpiDNpH1AY1xyoSe3FvUyxLfZ6w59tO_-9ePs55fzH81Ffn2zumw-XecPjMkyp1QaoxkrwUoQHQojZSGgErbgNcN1BUZbWjGGndSiBpDWoAXoBKdAO2TH2Yfd3s0Qnkcbk3pyUVvvsbdhjIpWZcE5SFbO6Ml_6GMYh36-bqb4_NmK0oWqd9Qf5-2kNoN7wmFSFNSSg1pyUPscVNO2zV7N3nzndTHZ7d6Lw28lJJNc3X1dKd7y-qq9-64q9gKG6Y2Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851608114</pqid></control><display><type>article</type><title>Glycidol: an Hydroxyl-Containing Epoxide Playing the Double Role of Substrate and Catalyst for CO2 Cycloaddition Reactions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Della Monica, Francesco ; Buonerba, Antonio ; Grassi, Alfonso ; Capacchione, Carmine ; Milione, Stefano</creator><creatorcontrib>Della Monica, Francesco ; Buonerba, Antonio ; Grassi, Alfonso ; Capacchione, Carmine ; Milione, Stefano</creatorcontrib><description>Glycidol is converted into glycerol carbonate (GC) by coupling with CO2 in the presence of tetrabutylammonium bromide (TBAB) under mild reaction conditions (T=60 °C, PCO2
=1 MPa) in excellent yields (99 %) and short reaction time (t=3 h). The unusual reactivity of this substrate compared to other epoxides, such as propylene oxide, under the same reaction conditions is clearly related to the presence of a hydroxyl functionality on the oxirane ring. Density functional theory calculations (DFT) supported by 1H NMR experiments reveal that the unique behavior of this substrate is a result of the formation of intermolecular hydrogen bonds into a dimeric structure, activating this molecule to nucleophilic attack, and allowing the formation of GC. Furthermore, the glycidol/TBAB catalytic system acts as an efficient organocatalyst for the cycloaddition of CO2 to various oxiranes.
Double duty: Glycydol is efficiently converted to glycerol carbonate by coupling with CO2 in the presence of tetrabutylammonium bromide under metal‐free, solvent free reaction conditions. Density functional theory calculations supported by 1H NMR experiments reveal that the unique behavior of this substrate is a result of the formation of intermolecular hydrogen bonds, activating this molecule to nucleophilic attack.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201601154</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>carbon dioxide ; cycloaddition ; density functional theory ; epoxide ; hydrogen bond</subject><ispartof>ChemSusChem, 2016-12, Vol.9 (24), p.3457-3464</ispartof><rights>2016 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6530-7351 ; 0000-0001-7254-8620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201601154$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201601154$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Della Monica, Francesco</creatorcontrib><creatorcontrib>Buonerba, Antonio</creatorcontrib><creatorcontrib>Grassi, Alfonso</creatorcontrib><creatorcontrib>Capacchione, Carmine</creatorcontrib><creatorcontrib>Milione, Stefano</creatorcontrib><title>Glycidol: an Hydroxyl-Containing Epoxide Playing the Double Role of Substrate and Catalyst for CO2 Cycloaddition Reactions</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Glycidol is converted into glycerol carbonate (GC) by coupling with CO2 in the presence of tetrabutylammonium bromide (TBAB) under mild reaction conditions (T=60 °C, PCO2
=1 MPa) in excellent yields (99 %) and short reaction time (t=3 h). The unusual reactivity of this substrate compared to other epoxides, such as propylene oxide, under the same reaction conditions is clearly related to the presence of a hydroxyl functionality on the oxirane ring. Density functional theory calculations (DFT) supported by 1H NMR experiments reveal that the unique behavior of this substrate is a result of the formation of intermolecular hydrogen bonds into a dimeric structure, activating this molecule to nucleophilic attack, and allowing the formation of GC. Furthermore, the glycidol/TBAB catalytic system acts as an efficient organocatalyst for the cycloaddition of CO2 to various oxiranes.
Double duty: Glycydol is efficiently converted to glycerol carbonate by coupling with CO2 in the presence of tetrabutylammonium bromide under metal‐free, solvent free reaction conditions. Density functional theory calculations supported by 1H NMR experiments reveal that the unique behavior of this substrate is a result of the formation of intermolecular hydrogen bonds, activating this molecule to nucleophilic attack.</description><subject>carbon dioxide</subject><subject>cycloaddition</subject><subject>density functional theory</subject><subject>epoxide</subject><subject>hydrogen bond</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkUFv1DAQhaMKpJbClbOlXrikHcexnXBDoWyrVhQaUHuzZm2nuLjxNnbEhl_fRIv2wGVmnvS90Whelr2ncEoBijMdoz4tgAqglJcH2RGtRJlzUd6_2s-MHmZvYnwEEFALcZT9XflJOxP8R4I9uZjMELaTz5vQJ3S96x_I-SZsnbHkm8dp0emXJZ_DuPaW3Ia5hI604zqmAZOddxjSYEI_xUS6MJDmpiDNpH1AY1xyoSe3FvUyxLfZ6w59tO_-9ePs55fzH81Ffn2zumw-XecPjMkyp1QaoxkrwUoQHQojZSGgErbgNcN1BUZbWjGGndSiBpDWoAXoBKdAO2TH2Yfd3s0Qnkcbk3pyUVvvsbdhjIpWZcE5SFbO6Ml_6GMYh36-bqb4_NmK0oWqd9Qf5-2kNoN7wmFSFNSSg1pyUPscVNO2zV7N3nzndTHZ7d6Lw28lJJNc3X1dKd7y-qq9-64q9gKG6Y2Y</recordid><startdate>20161220</startdate><enddate>20161220</enddate><creator>Della Monica, Francesco</creator><creator>Buonerba, Antonio</creator><creator>Grassi, Alfonso</creator><creator>Capacchione, Carmine</creator><creator>Milione, Stefano</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6530-7351</orcidid><orcidid>https://orcid.org/0000-0001-7254-8620</orcidid></search><sort><creationdate>20161220</creationdate><title>Glycidol: an Hydroxyl-Containing Epoxide Playing the Double Role of Substrate and Catalyst for CO2 Cycloaddition Reactions</title><author>Della Monica, Francesco ; Buonerba, Antonio ; Grassi, Alfonso ; Capacchione, Carmine ; Milione, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3374-117ddc3340e706fa6d7726086e2593ab80dce1833af7c69007edae00f65101fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>carbon dioxide</topic><topic>cycloaddition</topic><topic>density functional theory</topic><topic>epoxide</topic><topic>hydrogen bond</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Della Monica, Francesco</creatorcontrib><creatorcontrib>Buonerba, Antonio</creatorcontrib><creatorcontrib>Grassi, Alfonso</creatorcontrib><creatorcontrib>Capacchione, Carmine</creatorcontrib><creatorcontrib>Milione, Stefano</creatorcontrib><collection>Istex</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Della Monica, Francesco</au><au>Buonerba, Antonio</au><au>Grassi, Alfonso</au><au>Capacchione, Carmine</au><au>Milione, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycidol: an Hydroxyl-Containing Epoxide Playing the Double Role of Substrate and Catalyst for CO2 Cycloaddition Reactions</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2016-12-20</date><risdate>2016</risdate><volume>9</volume><issue>24</issue><spage>3457</spage><epage>3464</epage><pages>3457-3464</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Glycidol is converted into glycerol carbonate (GC) by coupling with CO2 in the presence of tetrabutylammonium bromide (TBAB) under mild reaction conditions (T=60 °C, PCO2
=1 MPa) in excellent yields (99 %) and short reaction time (t=3 h). The unusual reactivity of this substrate compared to other epoxides, such as propylene oxide, under the same reaction conditions is clearly related to the presence of a hydroxyl functionality on the oxirane ring. Density functional theory calculations (DFT) supported by 1H NMR experiments reveal that the unique behavior of this substrate is a result of the formation of intermolecular hydrogen bonds into a dimeric structure, activating this molecule to nucleophilic attack, and allowing the formation of GC. Furthermore, the glycidol/TBAB catalytic system acts as an efficient organocatalyst for the cycloaddition of CO2 to various oxiranes.
Double duty: Glycydol is efficiently converted to glycerol carbonate by coupling with CO2 in the presence of tetrabutylammonium bromide under metal‐free, solvent free reaction conditions. Density functional theory calculations supported by 1H NMR experiments reveal that the unique behavior of this substrate is a result of the formation of intermolecular hydrogen bonds, activating this molecule to nucleophilic attack.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/cssc.201601154</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6530-7351</orcidid><orcidid>https://orcid.org/0000-0001-7254-8620</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5631 |
ispartof | ChemSusChem, 2016-12, Vol.9 (24), p.3457-3464 |
issn | 1864-5631 1864-564X |
language | eng |
recordid | cdi_proquest_miscellaneous_1842550734 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | carbon dioxide cycloaddition density functional theory epoxide hydrogen bond |
title | Glycidol: an Hydroxyl-Containing Epoxide Playing the Double Role of Substrate and Catalyst for CO2 Cycloaddition Reactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycidol:%20an%20Hydroxyl-Containing%20Epoxide%20Playing%20the%20Double%20Role%20of%20Substrate%20and%20Catalyst%20for%20CO2%20Cycloaddition%20Reactions&rft.jtitle=ChemSusChem&rft.au=Della%E2%80%85Monica,%20Francesco&rft.date=2016-12-20&rft.volume=9&rft.issue=24&rft.spage=3457&rft.epage=3464&rft.pages=3457-3464&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201601154&rft_dat=%3Cproquest_wiley%3E4285352581%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1851608114&rft_id=info:pmid/&rfr_iscdi=true |