Computer-aided detection of pulmonary nodules using dynamic self-adaptive template matching and a FLDA classifier

Highlights • A new CAD scheme for pulmonary nodule detection is proposed. • Dynamic self-adaptive template matching is used to detect nodules. • FLDA classifier can filter false positive detection nodules.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica medica 2016-12, Vol.32 (12), p.1502-1509
Hauptverfasser: Gong, Jing, Liu, Ji-yu, Wang, Li-jia, Zheng, Bin, Nie, Sheng-dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1509
container_issue 12
container_start_page 1502
container_title Physica medica
container_volume 32
creator Gong, Jing
Liu, Ji-yu
Wang, Li-jia
Zheng, Bin
Nie, Sheng-dong
description Highlights • A new CAD scheme for pulmonary nodule detection is proposed. • Dynamic self-adaptive template matching is used to detect nodules. • FLDA classifier can filter false positive detection nodules.
doi_str_mv 10.1016/j.ejmp.2016.11.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1841799155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1120179716309772</els_id><sourcerecordid>1841799155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-8d15c9703e11468e1ecfe9e65729a7c063ee60a1e4606fee6b76cc08a04994903</originalsourceid><addsrcrecordid>eNp9kUFv1TAQhCMEoqXwBzggH7kk9TqJHUsIqXqlFOlJPRQkbpZrb8DBsdM4qfT-PY5e4dBDTzuHmZHm26J4D7QCCvx8qHAYp4plXQFUlMKL4hQEa0qQ8PNl1sBoCUKKk-JNSgOlNWNt-7o4YaJrOUB3Wtzv4jitC86ldhYtsbigWVwMJPZkWv0Yg54PJES7ekxkTS78IvYQ9OgMSej7Uls9Le4ByYLj5PWCZNSL-b35dLBEk6v95QUxXqfkeofz2-JVr33Cd4_3rPhx9eX77rrc33z9trvYl6YBWMrOQmukoDUCNLxDQNOjRN4KJrUwlNeInGrAhlPeZ30nuDG007SRspG0Pis-HnunOd6vmBY1umTQex0wrklB12Q0Eto2W9nRauaY0oy9mmY35t0KqNpQq0FtqNWGWgGojDqHPjz2r3cj2v-Rf2yz4dPRgHnlQ16uknEYDFo3Z8bKRvd8_-cnceNdcEb7P3jANMR1DpmfApWYoup2e_b2a-A1lUKw-i8SdKV-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1841799155</pqid></control><display><type>article</type><title>Computer-aided detection of pulmonary nodules using dynamic self-adaptive template matching and a FLDA classifier</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gong, Jing ; Liu, Ji-yu ; Wang, Li-jia ; Zheng, Bin ; Nie, Sheng-dong</creator><creatorcontrib>Gong, Jing ; Liu, Ji-yu ; Wang, Li-jia ; Zheng, Bin ; Nie, Sheng-dong</creatorcontrib><description>Highlights • A new CAD scheme for pulmonary nodule detection is proposed. • Dynamic self-adaptive template matching is used to detect nodules. • FLDA classifier can filter false positive detection nodules.</description><identifier>ISSN: 1120-1797</identifier><identifier>EISSN: 1724-191X</identifier><identifier>DOI: 10.1016/j.ejmp.2016.11.001</identifier><identifier>PMID: 27856118</identifier><language>eng</language><publisher>Italy: Elsevier Ltd</publisher><subject>Computer-aided detection ; CT images ; Discriminant Analysis ; False Positive Reactions ; FLDA ; Humans ; Image Processing, Computer-Assisted ; Linear Models ; Lung Neoplasms - diagnostic imaging ; Pulmonary nodule ; Radiographic Image Interpretation, Computer-Assisted - methods ; Radiology ; Template matching ; Tomography, X-Ray Computed</subject><ispartof>Physica medica, 2016-12, Vol.32 (12), p.1502-1509</ispartof><rights>Associazione Italiana di Fisica Medica</rights><rights>2016 Associazione Italiana di Fisica Medica</rights><rights>Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-8d15c9703e11468e1ecfe9e65729a7c063ee60a1e4606fee6b76cc08a04994903</citedby><cites>FETCH-LOGICAL-c411t-8d15c9703e11468e1ecfe9e65729a7c063ee60a1e4606fee6b76cc08a04994903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejmp.2016.11.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27856118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gong, Jing</creatorcontrib><creatorcontrib>Liu, Ji-yu</creatorcontrib><creatorcontrib>Wang, Li-jia</creatorcontrib><creatorcontrib>Zheng, Bin</creatorcontrib><creatorcontrib>Nie, Sheng-dong</creatorcontrib><title>Computer-aided detection of pulmonary nodules using dynamic self-adaptive template matching and a FLDA classifier</title><title>Physica medica</title><addtitle>Phys Med</addtitle><description>Highlights • A new CAD scheme for pulmonary nodule detection is proposed. • Dynamic self-adaptive template matching is used to detect nodules. • FLDA classifier can filter false positive detection nodules.</description><subject>Computer-aided detection</subject><subject>CT images</subject><subject>Discriminant Analysis</subject><subject>False Positive Reactions</subject><subject>FLDA</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Linear Models</subject><subject>Lung Neoplasms - diagnostic imaging</subject><subject>Pulmonary nodule</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Radiology</subject><subject>Template matching</subject><subject>Tomography, X-Ray Computed</subject><issn>1120-1797</issn><issn>1724-191X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFv1TAQhCMEoqXwBzggH7kk9TqJHUsIqXqlFOlJPRQkbpZrb8DBsdM4qfT-PY5e4dBDTzuHmZHm26J4D7QCCvx8qHAYp4plXQFUlMKL4hQEa0qQ8PNl1sBoCUKKk-JNSgOlNWNt-7o4YaJrOUB3Wtzv4jitC86ldhYtsbigWVwMJPZkWv0Yg54PJES7ekxkTS78IvYQ9OgMSej7Uls9Le4ByYLj5PWCZNSL-b35dLBEk6v95QUxXqfkeofz2-JVr33Cd4_3rPhx9eX77rrc33z9trvYl6YBWMrOQmukoDUCNLxDQNOjRN4KJrUwlNeInGrAhlPeZ30nuDG007SRspG0Pis-HnunOd6vmBY1umTQex0wrklB12Q0Eto2W9nRauaY0oy9mmY35t0KqNpQq0FtqNWGWgGojDqHPjz2r3cj2v-Rf2yz4dPRgHnlQ16uknEYDFo3Z8bKRvd8_-cnceNdcEb7P3jANMR1DpmfApWYoup2e_b2a-A1lUKw-i8SdKV-</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Gong, Jing</creator><creator>Liu, Ji-yu</creator><creator>Wang, Li-jia</creator><creator>Zheng, Bin</creator><creator>Nie, Sheng-dong</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161201</creationdate><title>Computer-aided detection of pulmonary nodules using dynamic self-adaptive template matching and a FLDA classifier</title><author>Gong, Jing ; Liu, Ji-yu ; Wang, Li-jia ; Zheng, Bin ; Nie, Sheng-dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-8d15c9703e11468e1ecfe9e65729a7c063ee60a1e4606fee6b76cc08a04994903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer-aided detection</topic><topic>CT images</topic><topic>Discriminant Analysis</topic><topic>False Positive Reactions</topic><topic>FLDA</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Linear Models</topic><topic>Lung Neoplasms - diagnostic imaging</topic><topic>Pulmonary nodule</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Radiology</topic><topic>Template matching</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Jing</creatorcontrib><creatorcontrib>Liu, Ji-yu</creatorcontrib><creatorcontrib>Wang, Li-jia</creatorcontrib><creatorcontrib>Zheng, Bin</creatorcontrib><creatorcontrib>Nie, Sheng-dong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physica medica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Jing</au><au>Liu, Ji-yu</au><au>Wang, Li-jia</au><au>Zheng, Bin</au><au>Nie, Sheng-dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer-aided detection of pulmonary nodules using dynamic self-adaptive template matching and a FLDA classifier</atitle><jtitle>Physica medica</jtitle><addtitle>Phys Med</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>32</volume><issue>12</issue><spage>1502</spage><epage>1509</epage><pages>1502-1509</pages><issn>1120-1797</issn><eissn>1724-191X</eissn><abstract>Highlights • A new CAD scheme for pulmonary nodule detection is proposed. • Dynamic self-adaptive template matching is used to detect nodules. • FLDA classifier can filter false positive detection nodules.</abstract><cop>Italy</cop><pub>Elsevier Ltd</pub><pmid>27856118</pmid><doi>10.1016/j.ejmp.2016.11.001</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1120-1797
ispartof Physica medica, 2016-12, Vol.32 (12), p.1502-1509
issn 1120-1797
1724-191X
language eng
recordid cdi_proquest_miscellaneous_1841799155
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Computer-aided detection
CT images
Discriminant Analysis
False Positive Reactions
FLDA
Humans
Image Processing, Computer-Assisted
Linear Models
Lung Neoplasms - diagnostic imaging
Pulmonary nodule
Radiographic Image Interpretation, Computer-Assisted - methods
Radiology
Template matching
Tomography, X-Ray Computed
title Computer-aided detection of pulmonary nodules using dynamic self-adaptive template matching and a FLDA classifier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer-aided%20detection%20of%20pulmonary%20nodules%20using%20dynamic%20self-adaptive%20template%20matching%20and%20a%20FLDA%20classifier&rft.jtitle=Physica%20medica&rft.au=Gong,%20Jing&rft.date=2016-12-01&rft.volume=32&rft.issue=12&rft.spage=1502&rft.epage=1509&rft.pages=1502-1509&rft.issn=1120-1797&rft.eissn=1724-191X&rft_id=info:doi/10.1016/j.ejmp.2016.11.001&rft_dat=%3Cproquest_cross%3E1841799155%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1841799155&rft_id=info:pmid/27856118&rft_els_id=S1120179716309772&rfr_iscdi=true