Nonlinear statistical data assimilation for HVC[Formula: see text] neurons in the avian song system

With the goal of building a model of the HVC nucleus in the avian song system, we discuss in detail a model of HVC[Formula: see text] projection neurons comprised of a somatic compartment with fast Na[Formula: see text] and K[Formula: see text] currents and a dendritic compartment with slower Ca[For...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological cybernetics 2016-12, Vol.110 (6), p.417-434
Hauptverfasser: Kadakia, Nirag, Armstrong, Eve, Breen, Daniel, Morone, Uriel, Daou, Arij, Margoliash, Daniel, Abarbanel, Henry D I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 434
container_issue 6
container_start_page 417
container_title Biological cybernetics
container_volume 110
creator Kadakia, Nirag
Armstrong, Eve
Breen, Daniel
Morone, Uriel
Daou, Arij
Margoliash, Daniel
Abarbanel, Henry D I
description With the goal of building a model of the HVC nucleus in the avian song system, we discuss in detail a model of HVC[Formula: see text] projection neurons comprised of a somatic compartment with fast Na[Formula: see text] and K[Formula: see text] currents and a dendritic compartment with slower Ca[Formula: see text] dynamics. We show this model qualitatively exhibits many observed electrophysiological behaviors. We then show in numerical procedures how one can design and analyze feasible laboratory experiments that allow the estimation of all of the many parameters and unmeasured dynamical variables, given observations of the somatic voltage [Formula: see text] alone. A key to this procedure is to initially estimate the slow dynamics associated with Ca, blocking the fast Na and K variations, and then with the Ca parameters fixed estimate the fast Na and K dynamics. This separation of time scales provides a numerically robust method for completing the full neuron model, and the efficacy of the method is tested by prediction when observations are complete. The simulation provides a framework for the slice preparation experiments and illustrates the use of data assimilation methods for the design of those experiments.
doi_str_mv 10.1007/s00422-016-0697-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1841795800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1841795800</sourcerecordid><originalsourceid>FETCH-LOGICAL-p568-adace4ba4b73a6fb696744b55972745e7edd13a4306e3d035b3a2dad89a416a93</originalsourceid><addsrcrecordid>eNo1kEFLwzAYhoMgbk5_gBfJ0Us1adKk8SbDOWHoZXgRKV-bbxpp09kvFffvHThPLzw8PIeXsQsprqUQ9oaE0HmeCWkyYZzN1BGbSq32xFoxYadEn0IIlxfuhE1ya8oyl-WUNU99bENEGDglSIFSaKDlHhJwIApdaPe0j3zTD3z5Mn9d9EM3tnDLCZEn_ElvPOI49JF4iDx9IIfvAJFTH9857Shhd8aON9ASnh92xtaL-_V8ma2eHx7nd6tsW5gyAw8N6hp0bRWYTW2csVrXReFsbnWBFr2XCrQSBpUXqqgV5B586UBLA07N2NVfdjv0XyNSqrpADbYtROxHqmSppXVFKcRevTyoY92hr7ZD6GDYVf-_qF8gJGRD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1841795800</pqid></control><display><type>article</type><title>Nonlinear statistical data assimilation for HVC[Formula: see text] neurons in the avian song system</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kadakia, Nirag ; Armstrong, Eve ; Breen, Daniel ; Morone, Uriel ; Daou, Arij ; Margoliash, Daniel ; Abarbanel, Henry D I</creator><creatorcontrib>Kadakia, Nirag ; Armstrong, Eve ; Breen, Daniel ; Morone, Uriel ; Daou, Arij ; Margoliash, Daniel ; Abarbanel, Henry D I</creatorcontrib><description>With the goal of building a model of the HVC nucleus in the avian song system, we discuss in detail a model of HVC[Formula: see text] projection neurons comprised of a somatic compartment with fast Na[Formula: see text] and K[Formula: see text] currents and a dendritic compartment with slower Ca[Formula: see text] dynamics. We show this model qualitatively exhibits many observed electrophysiological behaviors. We then show in numerical procedures how one can design and analyze feasible laboratory experiments that allow the estimation of all of the many parameters and unmeasured dynamical variables, given observations of the somatic voltage [Formula: see text] alone. A key to this procedure is to initially estimate the slow dynamics associated with Ca, blocking the fast Na and K variations, and then with the Ca parameters fixed estimate the fast Na and K dynamics. This separation of time scales provides a numerically robust method for completing the full neuron model, and the efficacy of the method is tested by prediction when observations are complete. The simulation provides a framework for the slice preparation experiments and illustrates the use of data assimilation methods for the design of those experiments.</description><identifier>EISSN: 1432-0770</identifier><identifier>DOI: 10.1007/s00422-016-0697-3</identifier><identifier>PMID: 27688218</identifier><language>eng</language><publisher>Germany</publisher><subject>Animals ; Dendrites ; Models, Neurological ; Neurons ; Songbirds</subject><ispartof>Biological cybernetics, 2016-12, Vol.110 (6), p.417-434</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27688218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kadakia, Nirag</creatorcontrib><creatorcontrib>Armstrong, Eve</creatorcontrib><creatorcontrib>Breen, Daniel</creatorcontrib><creatorcontrib>Morone, Uriel</creatorcontrib><creatorcontrib>Daou, Arij</creatorcontrib><creatorcontrib>Margoliash, Daniel</creatorcontrib><creatorcontrib>Abarbanel, Henry D I</creatorcontrib><title>Nonlinear statistical data assimilation for HVC[Formula: see text] neurons in the avian song system</title><title>Biological cybernetics</title><addtitle>Biol Cybern</addtitle><description>With the goal of building a model of the HVC nucleus in the avian song system, we discuss in detail a model of HVC[Formula: see text] projection neurons comprised of a somatic compartment with fast Na[Formula: see text] and K[Formula: see text] currents and a dendritic compartment with slower Ca[Formula: see text] dynamics. We show this model qualitatively exhibits many observed electrophysiological behaviors. We then show in numerical procedures how one can design and analyze feasible laboratory experiments that allow the estimation of all of the many parameters and unmeasured dynamical variables, given observations of the somatic voltage [Formula: see text] alone. A key to this procedure is to initially estimate the slow dynamics associated with Ca, blocking the fast Na and K variations, and then with the Ca parameters fixed estimate the fast Na and K dynamics. This separation of time scales provides a numerically robust method for completing the full neuron model, and the efficacy of the method is tested by prediction when observations are complete. The simulation provides a framework for the slice preparation experiments and illustrates the use of data assimilation methods for the design of those experiments.</description><subject>Animals</subject><subject>Dendrites</subject><subject>Models, Neurological</subject><subject>Neurons</subject><subject>Songbirds</subject><issn>1432-0770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kEFLwzAYhoMgbk5_gBfJ0Us1adKk8SbDOWHoZXgRKV-bbxpp09kvFffvHThPLzw8PIeXsQsprqUQ9oaE0HmeCWkyYZzN1BGbSq32xFoxYadEn0IIlxfuhE1ya8oyl-WUNU99bENEGDglSIFSaKDlHhJwIApdaPe0j3zTD3z5Mn9d9EM3tnDLCZEn_ElvPOI49JF4iDx9IIfvAJFTH9857Shhd8aON9ASnh92xtaL-_V8ma2eHx7nd6tsW5gyAw8N6hp0bRWYTW2csVrXReFsbnWBFr2XCrQSBpUXqqgV5B586UBLA07N2NVfdjv0XyNSqrpADbYtROxHqmSppXVFKcRevTyoY92hr7ZD6GDYVf-_qF8gJGRD</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Kadakia, Nirag</creator><creator>Armstrong, Eve</creator><creator>Breen, Daniel</creator><creator>Morone, Uriel</creator><creator>Daou, Arij</creator><creator>Margoliash, Daniel</creator><creator>Abarbanel, Henry D I</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>201612</creationdate><title>Nonlinear statistical data assimilation for HVC[Formula: see text] neurons in the avian song system</title><author>Kadakia, Nirag ; Armstrong, Eve ; Breen, Daniel ; Morone, Uriel ; Daou, Arij ; Margoliash, Daniel ; Abarbanel, Henry D I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p568-adace4ba4b73a6fb696744b55972745e7edd13a4306e3d035b3a2dad89a416a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Dendrites</topic><topic>Models, Neurological</topic><topic>Neurons</topic><topic>Songbirds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kadakia, Nirag</creatorcontrib><creatorcontrib>Armstrong, Eve</creatorcontrib><creatorcontrib>Breen, Daniel</creatorcontrib><creatorcontrib>Morone, Uriel</creatorcontrib><creatorcontrib>Daou, Arij</creatorcontrib><creatorcontrib>Margoliash, Daniel</creatorcontrib><creatorcontrib>Abarbanel, Henry D I</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Biological cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadakia, Nirag</au><au>Armstrong, Eve</au><au>Breen, Daniel</au><au>Morone, Uriel</au><au>Daou, Arij</au><au>Margoliash, Daniel</au><au>Abarbanel, Henry D I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear statistical data assimilation for HVC[Formula: see text] neurons in the avian song system</atitle><jtitle>Biological cybernetics</jtitle><addtitle>Biol Cybern</addtitle><date>2016-12</date><risdate>2016</risdate><volume>110</volume><issue>6</issue><spage>417</spage><epage>434</epage><pages>417-434</pages><eissn>1432-0770</eissn><abstract>With the goal of building a model of the HVC nucleus in the avian song system, we discuss in detail a model of HVC[Formula: see text] projection neurons comprised of a somatic compartment with fast Na[Formula: see text] and K[Formula: see text] currents and a dendritic compartment with slower Ca[Formula: see text] dynamics. We show this model qualitatively exhibits many observed electrophysiological behaviors. We then show in numerical procedures how one can design and analyze feasible laboratory experiments that allow the estimation of all of the many parameters and unmeasured dynamical variables, given observations of the somatic voltage [Formula: see text] alone. A key to this procedure is to initially estimate the slow dynamics associated with Ca, blocking the fast Na and K variations, and then with the Ca parameters fixed estimate the fast Na and K dynamics. This separation of time scales provides a numerically robust method for completing the full neuron model, and the efficacy of the method is tested by prediction when observations are complete. The simulation provides a framework for the slice preparation experiments and illustrates the use of data assimilation methods for the design of those experiments.</abstract><cop>Germany</cop><pmid>27688218</pmid><doi>10.1007/s00422-016-0697-3</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1432-0770
ispartof Biological cybernetics, 2016-12, Vol.110 (6), p.417-434
issn 1432-0770
language eng
recordid cdi_proquest_miscellaneous_1841795800
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animals
Dendrites
Models, Neurological
Neurons
Songbirds
title Nonlinear statistical data assimilation for HVC[Formula: see text] neurons in the avian song system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A14%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20statistical%20data%20assimilation%20for%20HVC%5BFormula:%20see%20text%5D%20neurons%20in%20the%20avian%20song%20system&rft.jtitle=Biological%20cybernetics&rft.au=Kadakia,%20Nirag&rft.date=2016-12&rft.volume=110&rft.issue=6&rft.spage=417&rft.epage=434&rft.pages=417-434&rft.eissn=1432-0770&rft_id=info:doi/10.1007/s00422-016-0697-3&rft_dat=%3Cproquest_pubme%3E1841795800%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1841795800&rft_id=info:pmid/27688218&rfr_iscdi=true