Modulation of alternative pre-mRNA splicing in vivo by pinin

Pre-mRNA splicing occurs in a large macromolecular RNA–protein complex called the spliceosome. The major components of the spliceosome include snRNP and SR proteins. We have previously identified an SR-like protein, pinin (pnn), which is localized not only in nuclear speckles but also at desmosomes....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2002-06, Vol.294 (2), p.448-455
Hauptverfasser: Wang, Ping, Lou, Pei-Jen, Leu, Steve, Ouyang, Pin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 455
container_issue 2
container_start_page 448
container_title Biochemical and biophysical research communications
container_volume 294
creator Wang, Ping
Lou, Pei-Jen
Leu, Steve
Ouyang, Pin
description Pre-mRNA splicing occurs in a large macromolecular RNA–protein complex called the spliceosome. The major components of the spliceosome include snRNP and SR proteins. We have previously identified an SR-like protein, pinin (pnn), which is localized not only in nuclear speckles but also at desmosomes. The nuclear localization of pnn is a dynamic process because pnn can be found not only with SR proteins in nuclear speckles but also in enlarged speckles following treatment of cells with RNA polymerase II inhibitors, DRB, and α-amanitin. Using adenovirus E1A and chimeric calcitonin/ dhfr construct as a splicing reporter minigene in combination with cellular cotransfection, we found that pnn regulates alternative 5 ′ and 3 ′ splicing by decreasing the use of distal splice sites. Regulation of 5 ′ splice site choice was also observed for RNPS1, a general splicing activator that interacts with pnn in nuclear speckles. The regulatory ability of pnn in alternative 5 ′ splicing, however, was not dependent on RNPS1 and a pnn mutant, lacking the N-terminal 167 amino acids, behaved like a dominant negative species, inhibiting E1A splicing when applied in splicing assays. These results provide direct evidence that pnn functions as a splicing regulator which participates itself directly in splicing reaction or indirectly via other components of splicing machinery.
doi_str_mv 10.1016/S0006-291X(02)00495-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_18407044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X02004953</els_id><sourcerecordid>18407044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-b9b9b54ef8edc3bae8de65e92324d22a32a8b154277bfb886e810e1df0ada13a3</originalsourceid><addsrcrecordid>eNqFkMlKxEAQhhtRnHH0EZScRA_Rqk5nA0GGwQ1GBRfw1nTSFWnJJLE7Cczbm1nQo9ShKPj-Kupj7BjhAgGjy1cAiHye4scZ8HMAkYZ-sMPGCCn4HEHssvEvMmIHzn0BIIoo3Wcj5BBiHPAxu3qsdVeq1tSVVxeeKluy1TD25DWW_MXL09RzTWlyU316pvJ609detvQaU5nqkO0VqnR0tO0T9n578za79-fPdw-z6dzPQ4TWz9KhQkFFQjoPMkWJpiiklAdcaM5VwFWSYSh4HGdFliQRJQiEugClFQYqmLDTzd7G1t8duVYujMupLFVFdeckJgJiEGIAww2Y29o5S4VsrFkou5QIcqVNrrXJlRMJXK61yWDInWwPdNmC9F9q62kArjcADW_2hqx0uaEqJ20s5a3UtfnnxA82AXyl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18407044</pqid></control><display><type>article</type><title>Modulation of alternative pre-mRNA splicing in vivo by pinin</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wang, Ping ; Lou, Pei-Jen ; Leu, Steve ; Ouyang, Pin</creator><creatorcontrib>Wang, Ping ; Lou, Pei-Jen ; Leu, Steve ; Ouyang, Pin</creatorcontrib><description>Pre-mRNA splicing occurs in a large macromolecular RNA–protein complex called the spliceosome. The major components of the spliceosome include snRNP and SR proteins. We have previously identified an SR-like protein, pinin (pnn), which is localized not only in nuclear speckles but also at desmosomes. The nuclear localization of pnn is a dynamic process because pnn can be found not only with SR proteins in nuclear speckles but also in enlarged speckles following treatment of cells with RNA polymerase II inhibitors, DRB, and α-amanitin. Using adenovirus E1A and chimeric calcitonin/ dhfr construct as a splicing reporter minigene in combination with cellular cotransfection, we found that pnn regulates alternative 5 ′ and 3 ′ splicing by decreasing the use of distal splice sites. Regulation of 5 ′ splice site choice was also observed for RNPS1, a general splicing activator that interacts with pnn in nuclear speckles. The regulatory ability of pnn in alternative 5 ′ splicing, however, was not dependent on RNPS1 and a pnn mutant, lacking the N-terminal 167 amino acids, behaved like a dominant negative species, inhibiting E1A splicing when applied in splicing assays. These results provide direct evidence that pnn functions as a splicing regulator which participates itself directly in splicing reaction or indirectly via other components of splicing machinery.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/S0006-291X(02)00495-3</identifier><identifier>PMID: 12051732</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>5' Untranslated Regions - genetics ; Adenovirus E1A Proteins - genetics ; Adenovirus E1A Proteins - metabolism ; Alternative splicing ; Alternative Splicing - drug effects ; Animals ; Calcitonin - genetics ; Cell Adhesion Molecules - metabolism ; Cell Adhesion Molecules - pharmacology ; Cell Line ; Cell Nucleus - metabolism ; Cell Nucleus Structures - metabolism ; COS Cells ; DNA-Binding Proteins - metabolism ; Humans ; Mutagenesis, Site-Directed ; Nuclear Proteins - metabolism ; Nuclear Proteins - pharmacology ; Pinin (pnn) ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Ribonucleoproteins ; RNA Precursors - metabolism ; RNA Processing, Post-Transcriptional - drug effects ; RNA-Binding Proteins - metabolism ; RNPS1 ; Tetrahydrofolate Dehydrogenase - genetics</subject><ispartof>Biochemical and biophysical research communications, 2002-06, Vol.294 (2), p.448-455</ispartof><rights>2002 Elsevier Science (USA)</rights><rights>(c) 2002 Elsevier Science (USA).</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-b9b9b54ef8edc3bae8de65e92324d22a32a8b154277bfb886e810e1df0ada13a3</citedby><cites>FETCH-LOGICAL-c510t-b9b9b54ef8edc3bae8de65e92324d22a32a8b154277bfb886e810e1df0ada13a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006291X02004953$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12051732$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Lou, Pei-Jen</creatorcontrib><creatorcontrib>Leu, Steve</creatorcontrib><creatorcontrib>Ouyang, Pin</creatorcontrib><title>Modulation of alternative pre-mRNA splicing in vivo by pinin</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>Pre-mRNA splicing occurs in a large macromolecular RNA–protein complex called the spliceosome. The major components of the spliceosome include snRNP and SR proteins. We have previously identified an SR-like protein, pinin (pnn), which is localized not only in nuclear speckles but also at desmosomes. The nuclear localization of pnn is a dynamic process because pnn can be found not only with SR proteins in nuclear speckles but also in enlarged speckles following treatment of cells with RNA polymerase II inhibitors, DRB, and α-amanitin. Using adenovirus E1A and chimeric calcitonin/ dhfr construct as a splicing reporter minigene in combination with cellular cotransfection, we found that pnn regulates alternative 5 ′ and 3 ′ splicing by decreasing the use of distal splice sites. Regulation of 5 ′ splice site choice was also observed for RNPS1, a general splicing activator that interacts with pnn in nuclear speckles. The regulatory ability of pnn in alternative 5 ′ splicing, however, was not dependent on RNPS1 and a pnn mutant, lacking the N-terminal 167 amino acids, behaved like a dominant negative species, inhibiting E1A splicing when applied in splicing assays. These results provide direct evidence that pnn functions as a splicing regulator which participates itself directly in splicing reaction or indirectly via other components of splicing machinery.</description><subject>5' Untranslated Regions - genetics</subject><subject>Adenovirus E1A Proteins - genetics</subject><subject>Adenovirus E1A Proteins - metabolism</subject><subject>Alternative splicing</subject><subject>Alternative Splicing - drug effects</subject><subject>Animals</subject><subject>Calcitonin - genetics</subject><subject>Cell Adhesion Molecules - metabolism</subject><subject>Cell Adhesion Molecules - pharmacology</subject><subject>Cell Line</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell Nucleus Structures - metabolism</subject><subject>COS Cells</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Humans</subject><subject>Mutagenesis, Site-Directed</subject><subject>Nuclear Proteins - metabolism</subject><subject>Nuclear Proteins - pharmacology</subject><subject>Pinin (pnn)</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Ribonucleoproteins</subject><subject>RNA Precursors - metabolism</subject><subject>RNA Processing, Post-Transcriptional - drug effects</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>RNPS1</subject><subject>Tetrahydrofolate Dehydrogenase - genetics</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMlKxEAQhhtRnHH0EZScRA_Rqk5nA0GGwQ1GBRfw1nTSFWnJJLE7Cczbm1nQo9ShKPj-Kupj7BjhAgGjy1cAiHye4scZ8HMAkYZ-sMPGCCn4HEHssvEvMmIHzn0BIIoo3Wcj5BBiHPAxu3qsdVeq1tSVVxeeKluy1TD25DWW_MXL09RzTWlyU316pvJ609detvQaU5nqkO0VqnR0tO0T9n578za79-fPdw-z6dzPQ4TWz9KhQkFFQjoPMkWJpiiklAdcaM5VwFWSYSh4HGdFliQRJQiEugClFQYqmLDTzd7G1t8duVYujMupLFVFdeckJgJiEGIAww2Y29o5S4VsrFkou5QIcqVNrrXJlRMJXK61yWDInWwPdNmC9F9q62kArjcADW_2hqx0uaEqJ20s5a3UtfnnxA82AXyl</recordid><startdate>20020607</startdate><enddate>20020607</enddate><creator>Wang, Ping</creator><creator>Lou, Pei-Jen</creator><creator>Leu, Steve</creator><creator>Ouyang, Pin</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope></search><sort><creationdate>20020607</creationdate><title>Modulation of alternative pre-mRNA splicing in vivo by pinin</title><author>Wang, Ping ; Lou, Pei-Jen ; Leu, Steve ; Ouyang, Pin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-b9b9b54ef8edc3bae8de65e92324d22a32a8b154277bfb886e810e1df0ada13a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>5' Untranslated Regions - genetics</topic><topic>Adenovirus E1A Proteins - genetics</topic><topic>Adenovirus E1A Proteins - metabolism</topic><topic>Alternative splicing</topic><topic>Alternative Splicing - drug effects</topic><topic>Animals</topic><topic>Calcitonin - genetics</topic><topic>Cell Adhesion Molecules - metabolism</topic><topic>Cell Adhesion Molecules - pharmacology</topic><topic>Cell Line</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell Nucleus Structures - metabolism</topic><topic>COS Cells</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Humans</topic><topic>Mutagenesis, Site-Directed</topic><topic>Nuclear Proteins - metabolism</topic><topic>Nuclear Proteins - pharmacology</topic><topic>Pinin (pnn)</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Ribonucleoproteins</topic><topic>RNA Precursors - metabolism</topic><topic>RNA Processing, Post-Transcriptional - drug effects</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>RNPS1</topic><topic>Tetrahydrofolate Dehydrogenase - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Lou, Pei-Jen</creatorcontrib><creatorcontrib>Leu, Steve</creatorcontrib><creatorcontrib>Ouyang, Pin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ping</au><au>Lou, Pei-Jen</au><au>Leu, Steve</au><au>Ouyang, Pin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of alternative pre-mRNA splicing in vivo by pinin</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2002-06-07</date><risdate>2002</risdate><volume>294</volume><issue>2</issue><spage>448</spage><epage>455</epage><pages>448-455</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>Pre-mRNA splicing occurs in a large macromolecular RNA–protein complex called the spliceosome. The major components of the spliceosome include snRNP and SR proteins. We have previously identified an SR-like protein, pinin (pnn), which is localized not only in nuclear speckles but also at desmosomes. The nuclear localization of pnn is a dynamic process because pnn can be found not only with SR proteins in nuclear speckles but also in enlarged speckles following treatment of cells with RNA polymerase II inhibitors, DRB, and α-amanitin. Using adenovirus E1A and chimeric calcitonin/ dhfr construct as a splicing reporter minigene in combination with cellular cotransfection, we found that pnn regulates alternative 5 ′ and 3 ′ splicing by decreasing the use of distal splice sites. Regulation of 5 ′ splice site choice was also observed for RNPS1, a general splicing activator that interacts with pnn in nuclear speckles. The regulatory ability of pnn in alternative 5 ′ splicing, however, was not dependent on RNPS1 and a pnn mutant, lacking the N-terminal 167 amino acids, behaved like a dominant negative species, inhibiting E1A splicing when applied in splicing assays. These results provide direct evidence that pnn functions as a splicing regulator which participates itself directly in splicing reaction or indirectly via other components of splicing machinery.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12051732</pmid><doi>10.1016/S0006-291X(02)00495-3</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-291X
ispartof Biochemical and biophysical research communications, 2002-06, Vol.294 (2), p.448-455
issn 0006-291X
1090-2104
language eng
recordid cdi_proquest_miscellaneous_18407044
source MEDLINE; Elsevier ScienceDirect Journals
subjects 5' Untranslated Regions - genetics
Adenovirus E1A Proteins - genetics
Adenovirus E1A Proteins - metabolism
Alternative splicing
Alternative Splicing - drug effects
Animals
Calcitonin - genetics
Cell Adhesion Molecules - metabolism
Cell Adhesion Molecules - pharmacology
Cell Line
Cell Nucleus - metabolism
Cell Nucleus Structures - metabolism
COS Cells
DNA-Binding Proteins - metabolism
Humans
Mutagenesis, Site-Directed
Nuclear Proteins - metabolism
Nuclear Proteins - pharmacology
Pinin (pnn)
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Ribonucleoproteins
RNA Precursors - metabolism
RNA Processing, Post-Transcriptional - drug effects
RNA-Binding Proteins - metabolism
RNPS1
Tetrahydrofolate Dehydrogenase - genetics
title Modulation of alternative pre-mRNA splicing in vivo by pinin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20alternative%20pre-mRNA%20splicing%20in%20vivo%20by%20pinin&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Wang,%20Ping&rft.date=2002-06-07&rft.volume=294&rft.issue=2&rft.spage=448&rft.epage=455&rft.pages=448-455&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/S0006-291X(02)00495-3&rft_dat=%3Cproquest_cross%3E18407044%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18407044&rft_id=info:pmid/12051732&rft_els_id=S0006291X02004953&rfr_iscdi=true