Molecular weight kinetics and chain scission models for dextran polymers during ultrasonic degradation

•Ultrasonic degradation leads to a more homologous dextran solution with lower Mw.•Malhotra model describes the molecular weight kinetics of all dextrans adequately.•Chain scission mechanism of dextran follows the midpoint scission model (R2>0.99). Ultrasonic degradation of six dextran samples wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2017-01, Vol.156, p.71-76
Hauptverfasser: Pu, Yuanyuan, Zou, Qingsong, Hou, Dianzhi, Zhang, Yiping, Chen, Shan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue
container_start_page 71
container_title Carbohydrate polymers
container_volume 156
creator Pu, Yuanyuan
Zou, Qingsong
Hou, Dianzhi
Zhang, Yiping
Chen, Shan
description •Ultrasonic degradation leads to a more homologous dextran solution with lower Mw.•Malhotra model describes the molecular weight kinetics of all dextrans adequately.•Chain scission mechanism of dextran follows the midpoint scission model (R2>0.99). Ultrasonic degradation of six dextran samples with different initial molecular weights (IMW) has been performed to investigate the degradation behavior and chain scission mechanism of dextrans. The weight-average molecular weight (Mw) and polydispersity index (D value) were monitored by High Performance Gel Permeation Chromatography (HPGPC). Results showed that Mw and D value decreased with increasing ultrasonic time, resulting in a more homologous dextran solution with lower molecular weight. A significant degradation occurred in dextrans with higher IMW, particularly at the initial stage of the ultrasonic treatment. The Malhotra model was found to well describe the molecular weight kinetics for all dextran samples. Experimental data was fitted into two chain scission models to study dextran chain scission mechanism and the model performance was compared. Results indicated that the midpoint scission model agreed well with experimental results, with a linear regression factor of R2>0.99.
doi_str_mv 10.1016/j.carbpol.2016.09.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1839740292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861716310712</els_id><sourcerecordid>1839740292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-c7b9b6642b77c29fffa7d7129bbf75db76c02c6f28265fa04819dcbf9bd341113</originalsourceid><addsrcrecordid>eNqFkM1O3DAUhS3UCoafR6Dyspukvo4njldVhaBFArEpa8u_g4fEntpJC2-P0Uy77d1Y1_qOj_UhdAmkBQL9l21rVNa7NLa0ri0RLQF-hFYwcNFAx9gHtCLAWDP0wE_QaSlbUqcHcoxOKB8YHdZshfx9Gp1ZRpXxHxc2TzN-DtHNwRSsosXmSYWIiwmlhBTxlKwbC_YpY-te5qwirj94nVwu2C45xA1exnpdUgymIpusrJpr8hx99Gos7uJwnqHHm-ufVz-au4fvt1ff7hrDOpgbw7XQfc-o5txQ4b1X3HKgQmvP11bz3hBqek8H2q-9ImwAYY32QtuOAUB3hj7v393l9GtxZZZTKMaNo4ouLUXC0AnOCBW0ous9anIqJTsvdzlMKr9KIPJdsdzKg2L5rlgSIavimvt0qFj05Oy_1F-nFfi6B6oq9zu4LKs_F42zITszS5vCfyreAPRZkjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1839740292</pqid></control><display><type>article</type><title>Molecular weight kinetics and chain scission models for dextran polymers during ultrasonic degradation</title><source>Elsevier ScienceDirect Journals</source><creator>Pu, Yuanyuan ; Zou, Qingsong ; Hou, Dianzhi ; Zhang, Yiping ; Chen, Shan</creator><creatorcontrib>Pu, Yuanyuan ; Zou, Qingsong ; Hou, Dianzhi ; Zhang, Yiping ; Chen, Shan</creatorcontrib><description>•Ultrasonic degradation leads to a more homologous dextran solution with lower Mw.•Malhotra model describes the molecular weight kinetics of all dextrans adequately.•Chain scission mechanism of dextran follows the midpoint scission model (R2&gt;0.99). Ultrasonic degradation of six dextran samples with different initial molecular weights (IMW) has been performed to investigate the degradation behavior and chain scission mechanism of dextrans. The weight-average molecular weight (Mw) and polydispersity index (D value) were monitored by High Performance Gel Permeation Chromatography (HPGPC). Results showed that Mw and D value decreased with increasing ultrasonic time, resulting in a more homologous dextran solution with lower molecular weight. A significant degradation occurred in dextrans with higher IMW, particularly at the initial stage of the ultrasonic treatment. The Malhotra model was found to well describe the molecular weight kinetics for all dextran samples. Experimental data was fitted into two chain scission models to study dextran chain scission mechanism and the model performance was compared. Results indicated that the midpoint scission model agreed well with experimental results, with a linear regression factor of R2&gt;0.99.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2016.09.017</identifier><identifier>PMID: 27842854</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Chain scission ; Dextran ; Kinetics ; Molecular weight ; Ultrasound</subject><ispartof>Carbohydrate polymers, 2017-01, Vol.156, p.71-76</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-c7b9b6642b77c29fffa7d7129bbf75db76c02c6f28265fa04819dcbf9bd341113</citedby><cites>FETCH-LOGICAL-c431t-c7b9b6642b77c29fffa7d7129bbf75db76c02c6f28265fa04819dcbf9bd341113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0144861716310712$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27842854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pu, Yuanyuan</creatorcontrib><creatorcontrib>Zou, Qingsong</creatorcontrib><creatorcontrib>Hou, Dianzhi</creatorcontrib><creatorcontrib>Zhang, Yiping</creatorcontrib><creatorcontrib>Chen, Shan</creatorcontrib><title>Molecular weight kinetics and chain scission models for dextran polymers during ultrasonic degradation</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>•Ultrasonic degradation leads to a more homologous dextran solution with lower Mw.•Malhotra model describes the molecular weight kinetics of all dextrans adequately.•Chain scission mechanism of dextran follows the midpoint scission model (R2&gt;0.99). Ultrasonic degradation of six dextran samples with different initial molecular weights (IMW) has been performed to investigate the degradation behavior and chain scission mechanism of dextrans. The weight-average molecular weight (Mw) and polydispersity index (D value) were monitored by High Performance Gel Permeation Chromatography (HPGPC). Results showed that Mw and D value decreased with increasing ultrasonic time, resulting in a more homologous dextran solution with lower molecular weight. A significant degradation occurred in dextrans with higher IMW, particularly at the initial stage of the ultrasonic treatment. The Malhotra model was found to well describe the molecular weight kinetics for all dextran samples. Experimental data was fitted into two chain scission models to study dextran chain scission mechanism and the model performance was compared. Results indicated that the midpoint scission model agreed well with experimental results, with a linear regression factor of R2&gt;0.99.</description><subject>Chain scission</subject><subject>Dextran</subject><subject>Kinetics</subject><subject>Molecular weight</subject><subject>Ultrasound</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM1O3DAUhS3UCoafR6Dyspukvo4njldVhaBFArEpa8u_g4fEntpJC2-P0Uy77d1Y1_qOj_UhdAmkBQL9l21rVNa7NLa0ri0RLQF-hFYwcNFAx9gHtCLAWDP0wE_QaSlbUqcHcoxOKB8YHdZshfx9Gp1ZRpXxHxc2TzN-DtHNwRSsosXmSYWIiwmlhBTxlKwbC_YpY-te5qwirj94nVwu2C45xA1exnpdUgymIpusrJpr8hx99Gos7uJwnqHHm-ufVz-au4fvt1ff7hrDOpgbw7XQfc-o5txQ4b1X3HKgQmvP11bz3hBqek8H2q-9ImwAYY32QtuOAUB3hj7v393l9GtxZZZTKMaNo4ouLUXC0AnOCBW0ous9anIqJTsvdzlMKr9KIPJdsdzKg2L5rlgSIavimvt0qFj05Oy_1F-nFfi6B6oq9zu4LKs_F42zITszS5vCfyreAPRZkjM</recordid><startdate>20170120</startdate><enddate>20170120</enddate><creator>Pu, Yuanyuan</creator><creator>Zou, Qingsong</creator><creator>Hou, Dianzhi</creator><creator>Zhang, Yiping</creator><creator>Chen, Shan</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170120</creationdate><title>Molecular weight kinetics and chain scission models for dextran polymers during ultrasonic degradation</title><author>Pu, Yuanyuan ; Zou, Qingsong ; Hou, Dianzhi ; Zhang, Yiping ; Chen, Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-c7b9b6642b77c29fffa7d7129bbf75db76c02c6f28265fa04819dcbf9bd341113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chain scission</topic><topic>Dextran</topic><topic>Kinetics</topic><topic>Molecular weight</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pu, Yuanyuan</creatorcontrib><creatorcontrib>Zou, Qingsong</creatorcontrib><creatorcontrib>Hou, Dianzhi</creatorcontrib><creatorcontrib>Zhang, Yiping</creatorcontrib><creatorcontrib>Chen, Shan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pu, Yuanyuan</au><au>Zou, Qingsong</au><au>Hou, Dianzhi</au><au>Zhang, Yiping</au><au>Chen, Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular weight kinetics and chain scission models for dextran polymers during ultrasonic degradation</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2017-01-20</date><risdate>2017</risdate><volume>156</volume><spage>71</spage><epage>76</epage><pages>71-76</pages><issn>0144-8617</issn><eissn>1879-1344</eissn><abstract>•Ultrasonic degradation leads to a more homologous dextran solution with lower Mw.•Malhotra model describes the molecular weight kinetics of all dextrans adequately.•Chain scission mechanism of dextran follows the midpoint scission model (R2&gt;0.99). Ultrasonic degradation of six dextran samples with different initial molecular weights (IMW) has been performed to investigate the degradation behavior and chain scission mechanism of dextrans. The weight-average molecular weight (Mw) and polydispersity index (D value) were monitored by High Performance Gel Permeation Chromatography (HPGPC). Results showed that Mw and D value decreased with increasing ultrasonic time, resulting in a more homologous dextran solution with lower molecular weight. A significant degradation occurred in dextrans with higher IMW, particularly at the initial stage of the ultrasonic treatment. The Malhotra model was found to well describe the molecular weight kinetics for all dextran samples. Experimental data was fitted into two chain scission models to study dextran chain scission mechanism and the model performance was compared. Results indicated that the midpoint scission model agreed well with experimental results, with a linear regression factor of R2&gt;0.99.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>27842854</pmid><doi>10.1016/j.carbpol.2016.09.017</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2017-01, Vol.156, p.71-76
issn 0144-8617
1879-1344
language eng
recordid cdi_proquest_miscellaneous_1839740292
source Elsevier ScienceDirect Journals
subjects Chain scission
Dextran
Kinetics
Molecular weight
Ultrasound
title Molecular weight kinetics and chain scission models for dextran polymers during ultrasonic degradation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A20%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20weight%20kinetics%20and%20chain%20scission%20models%20for%20dextran%20polymers%20during%20ultrasonic%20degradation&rft.jtitle=Carbohydrate%20polymers&rft.au=Pu,%20Yuanyuan&rft.date=2017-01-20&rft.volume=156&rft.spage=71&rft.epage=76&rft.pages=71-76&rft.issn=0144-8617&rft.eissn=1879-1344&rft_id=info:doi/10.1016/j.carbpol.2016.09.017&rft_dat=%3Cproquest_cross%3E1839740292%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1839740292&rft_id=info:pmid/27842854&rft_els_id=S0144861716310712&rfr_iscdi=true