Shape and Spatially-Varying Reflectance Estimation from Virtual Exemplars
This paper addresses the problem of estimating the shape of objects that exhibit spatially-varying reflectance. We assume that multiple images of the object are obtained under a fixed view-point and varying illumination, i.e., the setting of photometric stereo. At the core of our techniques is the a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2017-10, Vol.39 (10), p.2060-2073 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2073 |
---|---|
container_issue | 10 |
container_start_page | 2060 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 39 |
creator | Zhuo Hui Sankaranarayanan, Aswin C. |
description | This paper addresses the problem of estimating the shape of objects that exhibit spatially-varying reflectance. We assume that multiple images of the object are obtained under a fixed view-point and varying illumination, i.e., the setting of photometric stereo. At the core of our techniques is the assumption that the BRDF at each pixel lies in the non-negative span of a known BRDF dictionary. This assumption enables a per-pixel surface normal and BRDF estimation framework that is computationally tractable and requires no initialization in spite of the underlying problem being non-convex. Our estimation framework first solves for the surface normal at each pixel using a variant of example-based photometric stereo. We design an efficient multi-scale search strategy for estimating the surface normal and subsequently, refine this estimate using a gradient descent procedure. Given the surface normal estimate, we solve for the spatially-varying BRDF by constraining the BRDF at each pixel to be in the span of the BRDF dictionary; here, we use additional priors to further regularize the solution. A hallmark of our approach is that it does not require iterative optimization techniques nor the need for careful initialization, both of which are endemic to most state-of-the-art techniques. We showcase the performance of our technique on a wide range of simulated and real scenes where we outperform competing methods. |
doi_str_mv | 10.1109/TPAMI.2016.2623613 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1839112503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7728137</ieee_id><sourcerecordid>1839112503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-88b41b36db68ff902b38d1f6f72a3ce994b440c899a339bc163c4684be2961f43</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EouXxAyChSGzYpHg8qWMvESpQCQSipVvLSW0Iygs7kejf49LSBatZzLnzOIScAR0BUHk9f7l5mo4YBT5inCEH3CNDkChjHKPcJ8PQYbEQTAzIkfeflEIypnhIBiwVCGIsh2Q6-9CtiXS9jGat7gpdlqt4od2qqN-jV2NLk3e6zk008V1RBaCpI-uaKloUrut1GU2-TdWW2vkTcmB16c3pth6Tt7vJ_PYhfny-n97ePMZ5wqEL52QJZMiXGRfWSsoyFEuw3KZMY26kTLIkobmQUiPKLAeOISiSzDDJwSZ4TK42c1vXfPXGd6oqfG7KUtem6b0CgRKAhUcDevkP_Wx6V4frFIM0rBkDykCxDZW7xntnrGpdeNWtFFC1Fq1-Rau1aLUVHUIX29F9VpnlLvJnNgDnG6AwxuzaacoEYIo_eZuAoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174405139</pqid></control><display><type>article</type><title>Shape and Spatially-Varying Reflectance Estimation from Virtual Exemplars</title><source>IEEE Electronic Library (IEL)</source><creator>Zhuo Hui ; Sankaranarayanan, Aswin C.</creator><creatorcontrib>Zhuo Hui ; Sankaranarayanan, Aswin C.</creatorcontrib><description>This paper addresses the problem of estimating the shape of objects that exhibit spatially-varying reflectance. We assume that multiple images of the object are obtained under a fixed view-point and varying illumination, i.e., the setting of photometric stereo. At the core of our techniques is the assumption that the BRDF at each pixel lies in the non-negative span of a known BRDF dictionary. This assumption enables a per-pixel surface normal and BRDF estimation framework that is computationally tractable and requires no initialization in spite of the underlying problem being non-convex. Our estimation framework first solves for the surface normal at each pixel using a variant of example-based photometric stereo. We design an efficient multi-scale search strategy for estimating the surface normal and subsequently, refine this estimate using a gradient descent procedure. Given the surface normal estimate, we solve for the spatially-varying BRDF by constraining the BRDF at each pixel to be in the span of the BRDF dictionary; here, we use additional priors to further regularize the solution. A hallmark of our approach is that it does not require iterative optimization techniques nor the need for careful initialization, both of which are endemic to most state-of-the-art techniques. We showcase the performance of our technique on a wide range of simulated and real scenes where we outperform competing methods.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2016.2623613</identifier><identifier>PMID: 27831859</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>BRDF estimation ; Computational modeling ; Computer simulation ; Dictionaries ; Estimation ; Inverse problems ; Iterative methods ; Lighting ; Optimization ; Optimization techniques ; Photometric stereo ; Photometry ; Pixels ; Reflectance ; Shape ; spatially varying BRDF ; State of the art</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2017-10, Vol.39 (10), p.2060-2073</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-88b41b36db68ff902b38d1f6f72a3ce994b440c899a339bc163c4684be2961f43</citedby><cites>FETCH-LOGICAL-c461t-88b41b36db68ff902b38d1f6f72a3ce994b440c899a339bc163c4684be2961f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7728137$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7728137$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27831859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhuo Hui</creatorcontrib><creatorcontrib>Sankaranarayanan, Aswin C.</creatorcontrib><title>Shape and Spatially-Varying Reflectance Estimation from Virtual Exemplars</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>This paper addresses the problem of estimating the shape of objects that exhibit spatially-varying reflectance. We assume that multiple images of the object are obtained under a fixed view-point and varying illumination, i.e., the setting of photometric stereo. At the core of our techniques is the assumption that the BRDF at each pixel lies in the non-negative span of a known BRDF dictionary. This assumption enables a per-pixel surface normal and BRDF estimation framework that is computationally tractable and requires no initialization in spite of the underlying problem being non-convex. Our estimation framework first solves for the surface normal at each pixel using a variant of example-based photometric stereo. We design an efficient multi-scale search strategy for estimating the surface normal and subsequently, refine this estimate using a gradient descent procedure. Given the surface normal estimate, we solve for the spatially-varying BRDF by constraining the BRDF at each pixel to be in the span of the BRDF dictionary; here, we use additional priors to further regularize the solution. A hallmark of our approach is that it does not require iterative optimization techniques nor the need for careful initialization, both of which are endemic to most state-of-the-art techniques. We showcase the performance of our technique on a wide range of simulated and real scenes where we outperform competing methods.</description><subject>BRDF estimation</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Dictionaries</subject><subject>Estimation</subject><subject>Inverse problems</subject><subject>Iterative methods</subject><subject>Lighting</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Photometric stereo</subject><subject>Photometry</subject><subject>Pixels</subject><subject>Reflectance</subject><subject>Shape</subject><subject>spatially varying BRDF</subject><subject>State of the art</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtOwzAQRS0EouXxAyChSGzYpHg8qWMvESpQCQSipVvLSW0Iygs7kejf49LSBatZzLnzOIScAR0BUHk9f7l5mo4YBT5inCEH3CNDkChjHKPcJ8PQYbEQTAzIkfeflEIypnhIBiwVCGIsh2Q6-9CtiXS9jGat7gpdlqt4od2qqN-jV2NLk3e6zk008V1RBaCpI-uaKloUrut1GU2-TdWW2vkTcmB16c3pth6Tt7vJ_PYhfny-n97ePMZ5wqEL52QJZMiXGRfWSsoyFEuw3KZMY26kTLIkobmQUiPKLAeOISiSzDDJwSZ4TK42c1vXfPXGd6oqfG7KUtem6b0CgRKAhUcDevkP_Wx6V4frFIM0rBkDykCxDZW7xntnrGpdeNWtFFC1Fq1-Rau1aLUVHUIX29F9VpnlLvJnNgDnG6AwxuzaacoEYIo_eZuAoQ</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Zhuo Hui</creator><creator>Sankaranarayanan, Aswin C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20171001</creationdate><title>Shape and Spatially-Varying Reflectance Estimation from Virtual Exemplars</title><author>Zhuo Hui ; Sankaranarayanan, Aswin C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-88b41b36db68ff902b38d1f6f72a3ce994b440c899a339bc163c4684be2961f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>BRDF estimation</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Dictionaries</topic><topic>Estimation</topic><topic>Inverse problems</topic><topic>Iterative methods</topic><topic>Lighting</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Photometric stereo</topic><topic>Photometry</topic><topic>Pixels</topic><topic>Reflectance</topic><topic>Shape</topic><topic>spatially varying BRDF</topic><topic>State of the art</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuo Hui</creatorcontrib><creatorcontrib>Sankaranarayanan, Aswin C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhuo Hui</au><au>Sankaranarayanan, Aswin C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape and Spatially-Varying Reflectance Estimation from Virtual Exemplars</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>39</volume><issue>10</issue><spage>2060</spage><epage>2073</epage><pages>2060-2073</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>This paper addresses the problem of estimating the shape of objects that exhibit spatially-varying reflectance. We assume that multiple images of the object are obtained under a fixed view-point and varying illumination, i.e., the setting of photometric stereo. At the core of our techniques is the assumption that the BRDF at each pixel lies in the non-negative span of a known BRDF dictionary. This assumption enables a per-pixel surface normal and BRDF estimation framework that is computationally tractable and requires no initialization in spite of the underlying problem being non-convex. Our estimation framework first solves for the surface normal at each pixel using a variant of example-based photometric stereo. We design an efficient multi-scale search strategy for estimating the surface normal and subsequently, refine this estimate using a gradient descent procedure. Given the surface normal estimate, we solve for the spatially-varying BRDF by constraining the BRDF at each pixel to be in the span of the BRDF dictionary; here, we use additional priors to further regularize the solution. A hallmark of our approach is that it does not require iterative optimization techniques nor the need for careful initialization, both of which are endemic to most state-of-the-art techniques. We showcase the performance of our technique on a wide range of simulated and real scenes where we outperform competing methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27831859</pmid><doi>10.1109/TPAMI.2016.2623613</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2017-10, Vol.39 (10), p.2060-2073 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_proquest_miscellaneous_1839112503 |
source | IEEE Electronic Library (IEL) |
subjects | BRDF estimation Computational modeling Computer simulation Dictionaries Estimation Inverse problems Iterative methods Lighting Optimization Optimization techniques Photometric stereo Photometry Pixels Reflectance Shape spatially varying BRDF State of the art |
title | Shape and Spatially-Varying Reflectance Estimation from Virtual Exemplars |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape%20and%20Spatially-Varying%20Reflectance%20Estimation%20from%20Virtual%20Exemplars&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Zhuo%20Hui&rft.date=2017-10-01&rft.volume=39&rft.issue=10&rft.spage=2060&rft.epage=2073&rft.pages=2060-2073&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2016.2623613&rft_dat=%3Cproquest_RIE%3E1839112503%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174405139&rft_id=info:pmid/27831859&rft_ieee_id=7728137&rfr_iscdi=true |