Shape and Spatially-Varying Reflectance Estimation from Virtual Exemplars

This paper addresses the problem of estimating the shape of objects that exhibit spatially-varying reflectance. We assume that multiple images of the object are obtained under a fixed view-point and varying illumination, i.e., the setting of photometric stereo. At the core of our techniques is the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2017-10, Vol.39 (10), p.2060-2073
Hauptverfasser: Zhuo Hui, Sankaranarayanan, Aswin C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2073
container_issue 10
container_start_page 2060
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 39
creator Zhuo Hui
Sankaranarayanan, Aswin C.
description This paper addresses the problem of estimating the shape of objects that exhibit spatially-varying reflectance. We assume that multiple images of the object are obtained under a fixed view-point and varying illumination, i.e., the setting of photometric stereo. At the core of our techniques is the assumption that the BRDF at each pixel lies in the non-negative span of a known BRDF dictionary. This assumption enables a per-pixel surface normal and BRDF estimation framework that is computationally tractable and requires no initialization in spite of the underlying problem being non-convex. Our estimation framework first solves for the surface normal at each pixel using a variant of example-based photometric stereo. We design an efficient multi-scale search strategy for estimating the surface normal and subsequently, refine this estimate using a gradient descent procedure. Given the surface normal estimate, we solve for the spatially-varying BRDF by constraining the BRDF at each pixel to be in the span of the BRDF dictionary; here, we use additional priors to further regularize the solution. A hallmark of our approach is that it does not require iterative optimization techniques nor the need for careful initialization, both of which are endemic to most state-of-the-art techniques. We showcase the performance of our technique on a wide range of simulated and real scenes where we outperform competing methods.
doi_str_mv 10.1109/TPAMI.2016.2623613
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1839112503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7728137</ieee_id><sourcerecordid>1839112503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-88b41b36db68ff902b38d1f6f72a3ce994b440c899a339bc163c4684be2961f43</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRS0EouXxAyChSGzYpHg8qWMvESpQCQSipVvLSW0Iygs7kejf49LSBatZzLnzOIScAR0BUHk9f7l5mo4YBT5inCEH3CNDkChjHKPcJ8PQYbEQTAzIkfeflEIypnhIBiwVCGIsh2Q6-9CtiXS9jGat7gpdlqt4od2qqN-jV2NLk3e6zk008V1RBaCpI-uaKloUrut1GU2-TdWW2vkTcmB16c3pth6Tt7vJ_PYhfny-n97ePMZ5wqEL52QJZMiXGRfWSsoyFEuw3KZMY26kTLIkobmQUiPKLAeOISiSzDDJwSZ4TK42c1vXfPXGd6oqfG7KUtem6b0CgRKAhUcDevkP_Wx6V4frFIM0rBkDykCxDZW7xntnrGpdeNWtFFC1Fq1-Rau1aLUVHUIX29F9VpnlLvJnNgDnG6AwxuzaacoEYIo_eZuAoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174405139</pqid></control><display><type>article</type><title>Shape and Spatially-Varying Reflectance Estimation from Virtual Exemplars</title><source>IEEE Electronic Library (IEL)</source><creator>Zhuo Hui ; Sankaranarayanan, Aswin C.</creator><creatorcontrib>Zhuo Hui ; Sankaranarayanan, Aswin C.</creatorcontrib><description>This paper addresses the problem of estimating the shape of objects that exhibit spatially-varying reflectance. We assume that multiple images of the object are obtained under a fixed view-point and varying illumination, i.e., the setting of photometric stereo. At the core of our techniques is the assumption that the BRDF at each pixel lies in the non-negative span of a known BRDF dictionary. This assumption enables a per-pixel surface normal and BRDF estimation framework that is computationally tractable and requires no initialization in spite of the underlying problem being non-convex. Our estimation framework first solves for the surface normal at each pixel using a variant of example-based photometric stereo. We design an efficient multi-scale search strategy for estimating the surface normal and subsequently, refine this estimate using a gradient descent procedure. Given the surface normal estimate, we solve for the spatially-varying BRDF by constraining the BRDF at each pixel to be in the span of the BRDF dictionary; here, we use additional priors to further regularize the solution. A hallmark of our approach is that it does not require iterative optimization techniques nor the need for careful initialization, both of which are endemic to most state-of-the-art techniques. We showcase the performance of our technique on a wide range of simulated and real scenes where we outperform competing methods.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2016.2623613</identifier><identifier>PMID: 27831859</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>BRDF estimation ; Computational modeling ; Computer simulation ; Dictionaries ; Estimation ; Inverse problems ; Iterative methods ; Lighting ; Optimization ; Optimization techniques ; Photometric stereo ; Photometry ; Pixels ; Reflectance ; Shape ; spatially varying BRDF ; State of the art</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2017-10, Vol.39 (10), p.2060-2073</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-88b41b36db68ff902b38d1f6f72a3ce994b440c899a339bc163c4684be2961f43</citedby><cites>FETCH-LOGICAL-c461t-88b41b36db68ff902b38d1f6f72a3ce994b440c899a339bc163c4684be2961f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7728137$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7728137$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27831859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhuo Hui</creatorcontrib><creatorcontrib>Sankaranarayanan, Aswin C.</creatorcontrib><title>Shape and Spatially-Varying Reflectance Estimation from Virtual Exemplars</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>This paper addresses the problem of estimating the shape of objects that exhibit spatially-varying reflectance. We assume that multiple images of the object are obtained under a fixed view-point and varying illumination, i.e., the setting of photometric stereo. At the core of our techniques is the assumption that the BRDF at each pixel lies in the non-negative span of a known BRDF dictionary. This assumption enables a per-pixel surface normal and BRDF estimation framework that is computationally tractable and requires no initialization in spite of the underlying problem being non-convex. Our estimation framework first solves for the surface normal at each pixel using a variant of example-based photometric stereo. We design an efficient multi-scale search strategy for estimating the surface normal and subsequently, refine this estimate using a gradient descent procedure. Given the surface normal estimate, we solve for the spatially-varying BRDF by constraining the BRDF at each pixel to be in the span of the BRDF dictionary; here, we use additional priors to further regularize the solution. A hallmark of our approach is that it does not require iterative optimization techniques nor the need for careful initialization, both of which are endemic to most state-of-the-art techniques. We showcase the performance of our technique on a wide range of simulated and real scenes where we outperform competing methods.</description><subject>BRDF estimation</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Dictionaries</subject><subject>Estimation</subject><subject>Inverse problems</subject><subject>Iterative methods</subject><subject>Lighting</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Photometric stereo</subject><subject>Photometry</subject><subject>Pixels</subject><subject>Reflectance</subject><subject>Shape</subject><subject>spatially varying BRDF</subject><subject>State of the art</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtOwzAQRS0EouXxAyChSGzYpHg8qWMvESpQCQSipVvLSW0Iygs7kejf49LSBatZzLnzOIScAR0BUHk9f7l5mo4YBT5inCEH3CNDkChjHKPcJ8PQYbEQTAzIkfeflEIypnhIBiwVCGIsh2Q6-9CtiXS9jGat7gpdlqt4od2qqN-jV2NLk3e6zk008V1RBaCpI-uaKloUrut1GU2-TdWW2vkTcmB16c3pth6Tt7vJ_PYhfny-n97ePMZ5wqEL52QJZMiXGRfWSsoyFEuw3KZMY26kTLIkobmQUiPKLAeOISiSzDDJwSZ4TK42c1vXfPXGd6oqfG7KUtem6b0CgRKAhUcDevkP_Wx6V4frFIM0rBkDykCxDZW7xntnrGpdeNWtFFC1Fq1-Rau1aLUVHUIX29F9VpnlLvJnNgDnG6AwxuzaacoEYIo_eZuAoQ</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Zhuo Hui</creator><creator>Sankaranarayanan, Aswin C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20171001</creationdate><title>Shape and Spatially-Varying Reflectance Estimation from Virtual Exemplars</title><author>Zhuo Hui ; Sankaranarayanan, Aswin C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-88b41b36db68ff902b38d1f6f72a3ce994b440c899a339bc163c4684be2961f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>BRDF estimation</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Dictionaries</topic><topic>Estimation</topic><topic>Inverse problems</topic><topic>Iterative methods</topic><topic>Lighting</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Photometric stereo</topic><topic>Photometry</topic><topic>Pixels</topic><topic>Reflectance</topic><topic>Shape</topic><topic>spatially varying BRDF</topic><topic>State of the art</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuo Hui</creatorcontrib><creatorcontrib>Sankaranarayanan, Aswin C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhuo Hui</au><au>Sankaranarayanan, Aswin C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape and Spatially-Varying Reflectance Estimation from Virtual Exemplars</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>39</volume><issue>10</issue><spage>2060</spage><epage>2073</epage><pages>2060-2073</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>This paper addresses the problem of estimating the shape of objects that exhibit spatially-varying reflectance. We assume that multiple images of the object are obtained under a fixed view-point and varying illumination, i.e., the setting of photometric stereo. At the core of our techniques is the assumption that the BRDF at each pixel lies in the non-negative span of a known BRDF dictionary. This assumption enables a per-pixel surface normal and BRDF estimation framework that is computationally tractable and requires no initialization in spite of the underlying problem being non-convex. Our estimation framework first solves for the surface normal at each pixel using a variant of example-based photometric stereo. We design an efficient multi-scale search strategy for estimating the surface normal and subsequently, refine this estimate using a gradient descent procedure. Given the surface normal estimate, we solve for the spatially-varying BRDF by constraining the BRDF at each pixel to be in the span of the BRDF dictionary; here, we use additional priors to further regularize the solution. A hallmark of our approach is that it does not require iterative optimization techniques nor the need for careful initialization, both of which are endemic to most state-of-the-art techniques. We showcase the performance of our technique on a wide range of simulated and real scenes where we outperform competing methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27831859</pmid><doi>10.1109/TPAMI.2016.2623613</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2017-10, Vol.39 (10), p.2060-2073
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_miscellaneous_1839112503
source IEEE Electronic Library (IEL)
subjects BRDF estimation
Computational modeling
Computer simulation
Dictionaries
Estimation
Inverse problems
Iterative methods
Lighting
Optimization
Optimization techniques
Photometric stereo
Photometry
Pixels
Reflectance
Shape
spatially varying BRDF
State of the art
title Shape and Spatially-Varying Reflectance Estimation from Virtual Exemplars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape%20and%20Spatially-Varying%20Reflectance%20Estimation%20from%20Virtual%20Exemplars&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Zhuo%20Hui&rft.date=2017-10-01&rft.volume=39&rft.issue=10&rft.spage=2060&rft.epage=2073&rft.pages=2060-2073&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2016.2623613&rft_dat=%3Cproquest_RIE%3E1839112503%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174405139&rft_id=info:pmid/27831859&rft_ieee_id=7728137&rfr_iscdi=true