Traveling phase waves in asymmetric networks of noisy chaotic attractors

We explore identical Rössler systems organized into two equally sized groups, among which differing positive and negative in- and out-coupling strengths are allowed. With this asymmetric coupling, we analyze patterns in the phase dynamics that coexist with chaotic amplitudes. We specifically investi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2016-10, Vol.94 (4-1), p.042210-042210, Article 042210
Hauptverfasser: Peron, Thomas K Dm, Kurths, Jürgen, Rodrigues, Francisco A, Schimansky-Geier, Lutz, Sonnenschein, Bernard
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 042210
container_issue 4-1
container_start_page 042210
container_title Physical review. E
container_volume 94
creator Peron, Thomas K Dm
Kurths, Jürgen
Rodrigues, Francisco A
Schimansky-Geier, Lutz
Sonnenschein, Bernard
description We explore identical Rössler systems organized into two equally sized groups, among which differing positive and negative in- and out-coupling strengths are allowed. With this asymmetric coupling, we analyze patterns in the phase dynamics that coexist with chaotic amplitudes. We specifically investigate traveling phase waves where the oscillators settle on a new rhythm different from their own. We show that these waves are possible even without coherence in the phase angles. It is further demonstrated that the emergence of these incoherent traveling waves depends on the type of coupling, not on the individual dynamics of the Rössler systems. Together with the study of noise effects, our results suggest a promising new avenue toward the interplay of chaotic, noisy, coherent, and incoherent collective dynamics.
doi_str_mv 10.1103/PhysRevE.94.042210
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1839109138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1839109138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-b44a219bd0ef62fd7b392d82696212a969205b86fb574e7bb42a2b1ceb1780513</originalsourceid><addsrcrecordid>eNo9kDFPwzAUhC0EolXpH2BAHllS_GwnjkdUFYpUCYTKbNmJQwNJXGy3Vf49QS2d7p3e3Q0fQrdAZgCEPbxt-vBu94uZ5DPCKQVygcaUC5IQkrLL883TEZqG8EUIgYxIAfQajajIOXDJxmi59npvm7r7xNuNDhYfBhtw3WEd-ra10dcF7mw8OP8dsKtw5-rQ42KjXRw-Okavi-h8uEFXlW6CnZ50gj6eFuv5Mlm9Pr_MH1dJwbiIieFcU5CmJLbKaFUKwyQtc5rJjALVMpOUpCbPKpMKboUxnGpqoLAGRE5SYBN0f9zdevezsyGqtg6FbRrdWbcLCnImgUhg-RClx2jhXQjeVmrr61b7XgFRfxDVP0QluTpCHEp3p_2daW15rvwjY78vB27D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1839109138</pqid></control><display><type>article</type><title>Traveling phase waves in asymmetric networks of noisy chaotic attractors</title><source>American Physical Society Journals</source><creator>Peron, Thomas K Dm ; Kurths, Jürgen ; Rodrigues, Francisco A ; Schimansky-Geier, Lutz ; Sonnenschein, Bernard</creator><creatorcontrib>Peron, Thomas K Dm ; Kurths, Jürgen ; Rodrigues, Francisco A ; Schimansky-Geier, Lutz ; Sonnenschein, Bernard</creatorcontrib><description>We explore identical Rössler systems organized into two equally sized groups, among which differing positive and negative in- and out-coupling strengths are allowed. With this asymmetric coupling, we analyze patterns in the phase dynamics that coexist with chaotic amplitudes. We specifically investigate traveling phase waves where the oscillators settle on a new rhythm different from their own. We show that these waves are possible even without coherence in the phase angles. It is further demonstrated that the emergence of these incoherent traveling waves depends on the type of coupling, not on the individual dynamics of the Rössler systems. Together with the study of noise effects, our results suggest a promising new avenue toward the interplay of chaotic, noisy, coherent, and incoherent collective dynamics.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.94.042210</identifier><identifier>PMID: 27841493</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2016-10, Vol.94 (4-1), p.042210-042210, Article 042210</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-b44a219bd0ef62fd7b392d82696212a969205b86fb574e7bb42a2b1ceb1780513</citedby><cites>FETCH-LOGICAL-c347t-b44a219bd0ef62fd7b392d82696212a969205b86fb574e7bb42a2b1ceb1780513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,2865,2866,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27841493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peron, Thomas K Dm</creatorcontrib><creatorcontrib>Kurths, Jürgen</creatorcontrib><creatorcontrib>Rodrigues, Francisco A</creatorcontrib><creatorcontrib>Schimansky-Geier, Lutz</creatorcontrib><creatorcontrib>Sonnenschein, Bernard</creatorcontrib><title>Traveling phase waves in asymmetric networks of noisy chaotic attractors</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>We explore identical Rössler systems organized into two equally sized groups, among which differing positive and negative in- and out-coupling strengths are allowed. With this asymmetric coupling, we analyze patterns in the phase dynamics that coexist with chaotic amplitudes. We specifically investigate traveling phase waves where the oscillators settle on a new rhythm different from their own. We show that these waves are possible even without coherence in the phase angles. It is further demonstrated that the emergence of these incoherent traveling waves depends on the type of coupling, not on the individual dynamics of the Rössler systems. Together with the study of noise effects, our results suggest a promising new avenue toward the interplay of chaotic, noisy, coherent, and incoherent collective dynamics.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAUhC0EolXpH2BAHllS_GwnjkdUFYpUCYTKbNmJQwNJXGy3Vf49QS2d7p3e3Q0fQrdAZgCEPbxt-vBu94uZ5DPCKQVygcaUC5IQkrLL883TEZqG8EUIgYxIAfQajajIOXDJxmi59npvm7r7xNuNDhYfBhtw3WEd-ra10dcF7mw8OP8dsKtw5-rQ42KjXRw-Okavi-h8uEFXlW6CnZ50gj6eFuv5Mlm9Pr_MH1dJwbiIieFcU5CmJLbKaFUKwyQtc5rJjALVMpOUpCbPKpMKboUxnGpqoLAGRE5SYBN0f9zdevezsyGqtg6FbRrdWbcLCnImgUhg-RClx2jhXQjeVmrr61b7XgFRfxDVP0QluTpCHEp3p_2daW15rvwjY78vB27D</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Peron, Thomas K Dm</creator><creator>Kurths, Jürgen</creator><creator>Rodrigues, Francisco A</creator><creator>Schimansky-Geier, Lutz</creator><creator>Sonnenschein, Bernard</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201610</creationdate><title>Traveling phase waves in asymmetric networks of noisy chaotic attractors</title><author>Peron, Thomas K Dm ; Kurths, Jürgen ; Rodrigues, Francisco A ; Schimansky-Geier, Lutz ; Sonnenschein, Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-b44a219bd0ef62fd7b392d82696212a969205b86fb574e7bb42a2b1ceb1780513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peron, Thomas K Dm</creatorcontrib><creatorcontrib>Kurths, Jürgen</creatorcontrib><creatorcontrib>Rodrigues, Francisco A</creatorcontrib><creatorcontrib>Schimansky-Geier, Lutz</creatorcontrib><creatorcontrib>Sonnenschein, Bernard</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peron, Thomas K Dm</au><au>Kurths, Jürgen</au><au>Rodrigues, Francisco A</au><au>Schimansky-Geier, Lutz</au><au>Sonnenschein, Bernard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Traveling phase waves in asymmetric networks of noisy chaotic attractors</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2016-10</date><risdate>2016</risdate><volume>94</volume><issue>4-1</issue><spage>042210</spage><epage>042210</epage><pages>042210-042210</pages><artnum>042210</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>We explore identical Rössler systems organized into two equally sized groups, among which differing positive and negative in- and out-coupling strengths are allowed. With this asymmetric coupling, we analyze patterns in the phase dynamics that coexist with chaotic amplitudes. We specifically investigate traveling phase waves where the oscillators settle on a new rhythm different from their own. We show that these waves are possible even without coherence in the phase angles. It is further demonstrated that the emergence of these incoherent traveling waves depends on the type of coupling, not on the individual dynamics of the Rössler systems. Together with the study of noise effects, our results suggest a promising new avenue toward the interplay of chaotic, noisy, coherent, and incoherent collective dynamics.</abstract><cop>United States</cop><pmid>27841493</pmid><doi>10.1103/PhysRevE.94.042210</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2016-10, Vol.94 (4-1), p.042210-042210, Article 042210
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_1839109138
source American Physical Society Journals
title Traveling phase waves in asymmetric networks of noisy chaotic attractors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A44%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Traveling%20phase%20waves%20in%20asymmetric%20networks%20of%20noisy%20chaotic%20attractors&rft.jtitle=Physical%20review.%20E&rft.au=Peron,%20Thomas%20K%20Dm&rft.date=2016-10&rft.volume=94&rft.issue=4-1&rft.spage=042210&rft.epage=042210&rft.pages=042210-042210&rft.artnum=042210&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.94.042210&rft_dat=%3Cproquest_cross%3E1839109138%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1839109138&rft_id=info:pmid/27841493&rfr_iscdi=true