Influence of virtual intervention and blood rheology on mass transfer through thoracic aortic aneurysm

Abstract Computational fluid dynamics tools have been used to investigate blood flow through the human thoracic aortic models with aneurysm before and after virtual stent graft operation. The impact of blood rheology and aortic geometry on the wall shear stress (WSS), luminal surface low-density lip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2015-09, Vol.48 (12), p.3312-3322
Hauptverfasser: Lei, Yu, Chen, Ming, Xiong, Guanglei, Chen, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3322
container_issue 12
container_start_page 3312
container_title Journal of biomechanics
container_volume 48
creator Lei, Yu
Chen, Ming
Xiong, Guanglei
Chen, Jie
description Abstract Computational fluid dynamics tools have been used to investigate blood flow through the human thoracic aortic models with aneurysm before and after virtual stent graft operation. The impact of blood rheology and aortic geometry on the wall shear stress (WSS), luminal surface low-density lipoproteins (LDL) concentration, and oxygen flux along the arterial wall is investigated. The stent graft at the aneurysm has significant effects on WSS and mass transport in blood flow. Due to the low flow rate, Newtonian blood assumption generally under-estimates the WSS. The non-Newtonian blood rheology play an important role in the LDL transport as well as oxygen transport. It is found that WSS alone is insufficient to correctly predict the location with high risk of atherogenesis. The results suggest that WSS, luminal surface LDL concentration, and the oxygen flux on the wall have to be considered together to evaluate the performance of virtual operation.
doi_str_mv 10.1016/j.jbiomech.2015.06.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837344493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929015003590</els_id><sourcerecordid>1718909842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-fe09eaa5ad0758e97ed9396306e4f16da30c6d38d77282fd2f5f1e64fe754d193</originalsourceid><addsrcrecordid>eNqNkk9v1DAQxS0EokvhK1SRuHBJGNtJHF8QqOJPpUocgLPltcddL4ld7GSl_fY4bAtSL-X0JOs3zzPzhpALCg0F2r_dN_utjxOaXcOAdg30DTD2hGzoIHjN-ABPyQaA0VoyCWfkRc57ABCtkM_JGes5cNrLDXFXwY0LBoNVdNXBp3nRY-XDjOmAYfYxVDrYajvGaKu0wzjGm2NVXiedczUnHbLDVM27FJebXdGYtPGm0jHNqwRc0jFPL8kzp8eMr-70nPz49PH75Zf6-uvnq8sP17XpqJhrhyBR605bEN2AUqCVXJZme2wd7a3mYHrLBysEG5izzHWOYt86FF1rqeTn5M3J9zbFXwvmWU0-GxzH0khcsqIDF7xtW8kfR4UYgHfyf1wFHSTIoWUFff0A3cclhTLzH4pSSaEtVH-iTIo5J3TqNvlJp6OioNZ81V7d56vWfBX0quRbCi_u7JfthPZv2X2gBXh_ArBs-eAxqWz8Gq_1Cc2sbPSP__HugYUZffBGjz_xiPnfPCozBerbemXrkdEO1n0B_w2OTs7U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718119104</pqid></control><display><type>article</type><title>Influence of virtual intervention and blood rheology on mass transfer through thoracic aortic aneurysm</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Lei, Yu ; Chen, Ming ; Xiong, Guanglei ; Chen, Jie</creator><creatorcontrib>Lei, Yu ; Chen, Ming ; Xiong, Guanglei ; Chen, Jie</creatorcontrib><description>Abstract Computational fluid dynamics tools have been used to investigate blood flow through the human thoracic aortic models with aneurysm before and after virtual stent graft operation. The impact of blood rheology and aortic geometry on the wall shear stress (WSS), luminal surface low-density lipoproteins (LDL) concentration, and oxygen flux along the arterial wall is investigated. The stent graft at the aneurysm has significant effects on WSS and mass transport in blood flow. Due to the low flow rate, Newtonian blood assumption generally under-estimates the WSS. The non-Newtonian blood rheology play an important role in the LDL transport as well as oxygen transport. It is found that WSS alone is insufficient to correctly predict the location with high risk of atherogenesis. The results suggest that WSS, luminal surface LDL concentration, and the oxygen flux on the wall have to be considered together to evaluate the performance of virtual operation.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2015.06.022</identifier><identifier>PMID: 26303169</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Aneurysm ; Aneurysms ; Aorta, Thoracic - physiopathology ; Aortic Aneurysm, Thoracic - physiopathology ; Aortic Aneurysm, Thoracic - therapy ; Atherosclerosis ; Atherosclerosis - physiopathology ; Biomechanical Phenomena ; Blood ; Blood flow ; Computer Simulation ; Coronary vessels ; Fluid dynamics ; Flux ; Grafting ; Hemodynamics ; Humans ; Hydrodynamics ; Hypoxia ; Low-density lipoprotein ; Mass transfer ; Models, Biological ; Non-Newtonian ; Oxygen transport ; Permeability ; Physical Medicine and Rehabilitation ; Regional Blood Flow ; Reynolds number ; Rheology ; Shear stress ; Stent graft ; Stents ; Studies ; Surgical implants ; Transport ; Veins &amp; arteries ; Wall shear stress</subject><ispartof>Journal of biomechanics, 2015-09, Vol.48 (12), p.3312-3322</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-fe09eaa5ad0758e97ed9396306e4f16da30c6d38d77282fd2f5f1e64fe754d193</citedby><cites>FETCH-LOGICAL-c517t-fe09eaa5ad0758e97ed9396306e4f16da30c6d38d77282fd2f5f1e64fe754d193</cites><orcidid>0000-0002-6981-3363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1718119104?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002,64392,64394,64396,72476</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26303169$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lei, Yu</creatorcontrib><creatorcontrib>Chen, Ming</creatorcontrib><creatorcontrib>Xiong, Guanglei</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><title>Influence of virtual intervention and blood rheology on mass transfer through thoracic aortic aneurysm</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Abstract Computational fluid dynamics tools have been used to investigate blood flow through the human thoracic aortic models with aneurysm before and after virtual stent graft operation. The impact of blood rheology and aortic geometry on the wall shear stress (WSS), luminal surface low-density lipoproteins (LDL) concentration, and oxygen flux along the arterial wall is investigated. The stent graft at the aneurysm has significant effects on WSS and mass transport in blood flow. Due to the low flow rate, Newtonian blood assumption generally under-estimates the WSS. The non-Newtonian blood rheology play an important role in the LDL transport as well as oxygen transport. It is found that WSS alone is insufficient to correctly predict the location with high risk of atherogenesis. The results suggest that WSS, luminal surface LDL concentration, and the oxygen flux on the wall have to be considered together to evaluate the performance of virtual operation.</description><subject>Aneurysm</subject><subject>Aneurysms</subject><subject>Aorta, Thoracic - physiopathology</subject><subject>Aortic Aneurysm, Thoracic - physiopathology</subject><subject>Aortic Aneurysm, Thoracic - therapy</subject><subject>Atherosclerosis</subject><subject>Atherosclerosis - physiopathology</subject><subject>Biomechanical Phenomena</subject><subject>Blood</subject><subject>Blood flow</subject><subject>Computer Simulation</subject><subject>Coronary vessels</subject><subject>Fluid dynamics</subject><subject>Flux</subject><subject>Grafting</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Hypoxia</subject><subject>Low-density lipoprotein</subject><subject>Mass transfer</subject><subject>Models, Biological</subject><subject>Non-Newtonian</subject><subject>Oxygen transport</subject><subject>Permeability</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Regional Blood Flow</subject><subject>Reynolds number</subject><subject>Rheology</subject><subject>Shear stress</subject><subject>Stent graft</subject><subject>Stents</subject><subject>Studies</subject><subject>Surgical implants</subject><subject>Transport</subject><subject>Veins &amp; arteries</subject><subject>Wall shear stress</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkk9v1DAQxS0EokvhK1SRuHBJGNtJHF8QqOJPpUocgLPltcddL4ld7GSl_fY4bAtSL-X0JOs3zzPzhpALCg0F2r_dN_utjxOaXcOAdg30DTD2hGzoIHjN-ABPyQaA0VoyCWfkRc57ABCtkM_JGes5cNrLDXFXwY0LBoNVdNXBp3nRY-XDjOmAYfYxVDrYajvGaKu0wzjGm2NVXiedczUnHbLDVM27FJebXdGYtPGm0jHNqwRc0jFPL8kzp8eMr-70nPz49PH75Zf6-uvnq8sP17XpqJhrhyBR605bEN2AUqCVXJZme2wd7a3mYHrLBysEG5izzHWOYt86FF1rqeTn5M3J9zbFXwvmWU0-GxzH0khcsqIDF7xtW8kfR4UYgHfyf1wFHSTIoWUFff0A3cclhTLzH4pSSaEtVH-iTIo5J3TqNvlJp6OioNZ81V7d56vWfBX0quRbCi_u7JfthPZv2X2gBXh_ArBs-eAxqWz8Gq_1Cc2sbPSP__HugYUZffBGjz_xiPnfPCozBerbemXrkdEO1n0B_w2OTs7U</recordid><startdate>20150918</startdate><enddate>20150918</enddate><creator>Lei, Yu</creator><creator>Chen, Ming</creator><creator>Xiong, Guanglei</creator><creator>Chen, Jie</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-6981-3363</orcidid></search><sort><creationdate>20150918</creationdate><title>Influence of virtual intervention and blood rheology on mass transfer through thoracic aortic aneurysm</title><author>Lei, Yu ; Chen, Ming ; Xiong, Guanglei ; Chen, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-fe09eaa5ad0758e97ed9396306e4f16da30c6d38d77282fd2f5f1e64fe754d193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aneurysm</topic><topic>Aneurysms</topic><topic>Aorta, Thoracic - physiopathology</topic><topic>Aortic Aneurysm, Thoracic - physiopathology</topic><topic>Aortic Aneurysm, Thoracic - therapy</topic><topic>Atherosclerosis</topic><topic>Atherosclerosis - physiopathology</topic><topic>Biomechanical Phenomena</topic><topic>Blood</topic><topic>Blood flow</topic><topic>Computer Simulation</topic><topic>Coronary vessels</topic><topic>Fluid dynamics</topic><topic>Flux</topic><topic>Grafting</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Hypoxia</topic><topic>Low-density lipoprotein</topic><topic>Mass transfer</topic><topic>Models, Biological</topic><topic>Non-Newtonian</topic><topic>Oxygen transport</topic><topic>Permeability</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Regional Blood Flow</topic><topic>Reynolds number</topic><topic>Rheology</topic><topic>Shear stress</topic><topic>Stent graft</topic><topic>Stents</topic><topic>Studies</topic><topic>Surgical implants</topic><topic>Transport</topic><topic>Veins &amp; arteries</topic><topic>Wall shear stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Yu</creatorcontrib><creatorcontrib>Chen, Ming</creatorcontrib><creatorcontrib>Xiong, Guanglei</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Yu</au><au>Chen, Ming</au><au>Xiong, Guanglei</au><au>Chen, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of virtual intervention and blood rheology on mass transfer through thoracic aortic aneurysm</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2015-09-18</date><risdate>2015</risdate><volume>48</volume><issue>12</issue><spage>3312</spage><epage>3322</epage><pages>3312-3322</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Abstract Computational fluid dynamics tools have been used to investigate blood flow through the human thoracic aortic models with aneurysm before and after virtual stent graft operation. The impact of blood rheology and aortic geometry on the wall shear stress (WSS), luminal surface low-density lipoproteins (LDL) concentration, and oxygen flux along the arterial wall is investigated. The stent graft at the aneurysm has significant effects on WSS and mass transport in blood flow. Due to the low flow rate, Newtonian blood assumption generally under-estimates the WSS. The non-Newtonian blood rheology play an important role in the LDL transport as well as oxygen transport. It is found that WSS alone is insufficient to correctly predict the location with high risk of atherogenesis. The results suggest that WSS, luminal surface LDL concentration, and the oxygen flux on the wall have to be considered together to evaluate the performance of virtual operation.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>26303169</pmid><doi>10.1016/j.jbiomech.2015.06.022</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6981-3363</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2015-09, Vol.48 (12), p.3312-3322
issn 0021-9290
1873-2380
language eng
recordid cdi_proquest_miscellaneous_1837344493
source MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland
subjects Aneurysm
Aneurysms
Aorta, Thoracic - physiopathology
Aortic Aneurysm, Thoracic - physiopathology
Aortic Aneurysm, Thoracic - therapy
Atherosclerosis
Atherosclerosis - physiopathology
Biomechanical Phenomena
Blood
Blood flow
Computer Simulation
Coronary vessels
Fluid dynamics
Flux
Grafting
Hemodynamics
Humans
Hydrodynamics
Hypoxia
Low-density lipoprotein
Mass transfer
Models, Biological
Non-Newtonian
Oxygen transport
Permeability
Physical Medicine and Rehabilitation
Regional Blood Flow
Reynolds number
Rheology
Shear stress
Stent graft
Stents
Studies
Surgical implants
Transport
Veins & arteries
Wall shear stress
title Influence of virtual intervention and blood rheology on mass transfer through thoracic aortic aneurysm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T20%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20virtual%20intervention%20and%20blood%20rheology%20on%20mass%20transfer%20through%20thoracic%20aortic%20aneurysm&rft.jtitle=Journal%20of%20biomechanics&rft.au=Lei,%20Yu&rft.date=2015-09-18&rft.volume=48&rft.issue=12&rft.spage=3312&rft.epage=3322&rft.pages=3312-3322&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2015.06.022&rft_dat=%3Cproquest_cross%3E1718909842%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718119104&rft_id=info:pmid/26303169&rft_els_id=S0021929015003590&rfr_iscdi=true