Influence of virtual intervention and blood rheology on mass transfer through thoracic aortic aneurysm
Abstract Computational fluid dynamics tools have been used to investigate blood flow through the human thoracic aortic models with aneurysm before and after virtual stent graft operation. The impact of blood rheology and aortic geometry on the wall shear stress (WSS), luminal surface low-density lip...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 2015-09, Vol.48 (12), p.3312-3322 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3322 |
---|---|
container_issue | 12 |
container_start_page | 3312 |
container_title | Journal of biomechanics |
container_volume | 48 |
creator | Lei, Yu Chen, Ming Xiong, Guanglei Chen, Jie |
description | Abstract Computational fluid dynamics tools have been used to investigate blood flow through the human thoracic aortic models with aneurysm before and after virtual stent graft operation. The impact of blood rheology and aortic geometry on the wall shear stress (WSS), luminal surface low-density lipoproteins (LDL) concentration, and oxygen flux along the arterial wall is investigated. The stent graft at the aneurysm has significant effects on WSS and mass transport in blood flow. Due to the low flow rate, Newtonian blood assumption generally under-estimates the WSS. The non-Newtonian blood rheology play an important role in the LDL transport as well as oxygen transport. It is found that WSS alone is insufficient to correctly predict the location with high risk of atherogenesis. The results suggest that WSS, luminal surface LDL concentration, and the oxygen flux on the wall have to be considered together to evaluate the performance of virtual operation. |
doi_str_mv | 10.1016/j.jbiomech.2015.06.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837344493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929015003590</els_id><sourcerecordid>1718909842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-fe09eaa5ad0758e97ed9396306e4f16da30c6d38d77282fd2f5f1e64fe754d193</originalsourceid><addsrcrecordid>eNqNkk9v1DAQxS0EokvhK1SRuHBJGNtJHF8QqOJPpUocgLPltcddL4ld7GSl_fY4bAtSL-X0JOs3zzPzhpALCg0F2r_dN_utjxOaXcOAdg30DTD2hGzoIHjN-ABPyQaA0VoyCWfkRc57ABCtkM_JGes5cNrLDXFXwY0LBoNVdNXBp3nRY-XDjOmAYfYxVDrYajvGaKu0wzjGm2NVXiedczUnHbLDVM27FJebXdGYtPGm0jHNqwRc0jFPL8kzp8eMr-70nPz49PH75Zf6-uvnq8sP17XpqJhrhyBR605bEN2AUqCVXJZme2wd7a3mYHrLBysEG5izzHWOYt86FF1rqeTn5M3J9zbFXwvmWU0-GxzH0khcsqIDF7xtW8kfR4UYgHfyf1wFHSTIoWUFff0A3cclhTLzH4pSSaEtVH-iTIo5J3TqNvlJp6OioNZ81V7d56vWfBX0quRbCi_u7JfthPZv2X2gBXh_ArBs-eAxqWz8Gq_1Cc2sbPSP__HugYUZffBGjz_xiPnfPCozBerbemXrkdEO1n0B_w2OTs7U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718119104</pqid></control><display><type>article</type><title>Influence of virtual intervention and blood rheology on mass transfer through thoracic aortic aneurysm</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Lei, Yu ; Chen, Ming ; Xiong, Guanglei ; Chen, Jie</creator><creatorcontrib>Lei, Yu ; Chen, Ming ; Xiong, Guanglei ; Chen, Jie</creatorcontrib><description>Abstract Computational fluid dynamics tools have been used to investigate blood flow through the human thoracic aortic models with aneurysm before and after virtual stent graft operation. The impact of blood rheology and aortic geometry on the wall shear stress (WSS), luminal surface low-density lipoproteins (LDL) concentration, and oxygen flux along the arterial wall is investigated. The stent graft at the aneurysm has significant effects on WSS and mass transport in blood flow. Due to the low flow rate, Newtonian blood assumption generally under-estimates the WSS. The non-Newtonian blood rheology play an important role in the LDL transport as well as oxygen transport. It is found that WSS alone is insufficient to correctly predict the location with high risk of atherogenesis. The results suggest that WSS, luminal surface LDL concentration, and the oxygen flux on the wall have to be considered together to evaluate the performance of virtual operation.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2015.06.022</identifier><identifier>PMID: 26303169</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Aneurysm ; Aneurysms ; Aorta, Thoracic - physiopathology ; Aortic Aneurysm, Thoracic - physiopathology ; Aortic Aneurysm, Thoracic - therapy ; Atherosclerosis ; Atherosclerosis - physiopathology ; Biomechanical Phenomena ; Blood ; Blood flow ; Computer Simulation ; Coronary vessels ; Fluid dynamics ; Flux ; Grafting ; Hemodynamics ; Humans ; Hydrodynamics ; Hypoxia ; Low-density lipoprotein ; Mass transfer ; Models, Biological ; Non-Newtonian ; Oxygen transport ; Permeability ; Physical Medicine and Rehabilitation ; Regional Blood Flow ; Reynolds number ; Rheology ; Shear stress ; Stent graft ; Stents ; Studies ; Surgical implants ; Transport ; Veins & arteries ; Wall shear stress</subject><ispartof>Journal of biomechanics, 2015-09, Vol.48 (12), p.3312-3322</ispartof><rights>Elsevier Ltd</rights><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-fe09eaa5ad0758e97ed9396306e4f16da30c6d38d77282fd2f5f1e64fe754d193</citedby><cites>FETCH-LOGICAL-c517t-fe09eaa5ad0758e97ed9396306e4f16da30c6d38d77282fd2f5f1e64fe754d193</cites><orcidid>0000-0002-6981-3363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1718119104?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002,64392,64394,64396,72476</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26303169$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lei, Yu</creatorcontrib><creatorcontrib>Chen, Ming</creatorcontrib><creatorcontrib>Xiong, Guanglei</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><title>Influence of virtual intervention and blood rheology on mass transfer through thoracic aortic aneurysm</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Abstract Computational fluid dynamics tools have been used to investigate blood flow through the human thoracic aortic models with aneurysm before and after virtual stent graft operation. The impact of blood rheology and aortic geometry on the wall shear stress (WSS), luminal surface low-density lipoproteins (LDL) concentration, and oxygen flux along the arterial wall is investigated. The stent graft at the aneurysm has significant effects on WSS and mass transport in blood flow. Due to the low flow rate, Newtonian blood assumption generally under-estimates the WSS. The non-Newtonian blood rheology play an important role in the LDL transport as well as oxygen transport. It is found that WSS alone is insufficient to correctly predict the location with high risk of atherogenesis. The results suggest that WSS, luminal surface LDL concentration, and the oxygen flux on the wall have to be considered together to evaluate the performance of virtual operation.</description><subject>Aneurysm</subject><subject>Aneurysms</subject><subject>Aorta, Thoracic - physiopathology</subject><subject>Aortic Aneurysm, Thoracic - physiopathology</subject><subject>Aortic Aneurysm, Thoracic - therapy</subject><subject>Atherosclerosis</subject><subject>Atherosclerosis - physiopathology</subject><subject>Biomechanical Phenomena</subject><subject>Blood</subject><subject>Blood flow</subject><subject>Computer Simulation</subject><subject>Coronary vessels</subject><subject>Fluid dynamics</subject><subject>Flux</subject><subject>Grafting</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Hypoxia</subject><subject>Low-density lipoprotein</subject><subject>Mass transfer</subject><subject>Models, Biological</subject><subject>Non-Newtonian</subject><subject>Oxygen transport</subject><subject>Permeability</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Regional Blood Flow</subject><subject>Reynolds number</subject><subject>Rheology</subject><subject>Shear stress</subject><subject>Stent graft</subject><subject>Stents</subject><subject>Studies</subject><subject>Surgical implants</subject><subject>Transport</subject><subject>Veins & arteries</subject><subject>Wall shear stress</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkk9v1DAQxS0EokvhK1SRuHBJGNtJHF8QqOJPpUocgLPltcddL4ld7GSl_fY4bAtSL-X0JOs3zzPzhpALCg0F2r_dN_utjxOaXcOAdg30DTD2hGzoIHjN-ABPyQaA0VoyCWfkRc57ABCtkM_JGes5cNrLDXFXwY0LBoNVdNXBp3nRY-XDjOmAYfYxVDrYajvGaKu0wzjGm2NVXiedczUnHbLDVM27FJebXdGYtPGm0jHNqwRc0jFPL8kzp8eMr-70nPz49PH75Zf6-uvnq8sP17XpqJhrhyBR605bEN2AUqCVXJZme2wd7a3mYHrLBysEG5izzHWOYt86FF1rqeTn5M3J9zbFXwvmWU0-GxzH0khcsqIDF7xtW8kfR4UYgHfyf1wFHSTIoWUFff0A3cclhTLzH4pSSaEtVH-iTIo5J3TqNvlJp6OioNZ81V7d56vWfBX0quRbCi_u7JfthPZv2X2gBXh_ArBs-eAxqWz8Gq_1Cc2sbPSP__HugYUZffBGjz_xiPnfPCozBerbemXrkdEO1n0B_w2OTs7U</recordid><startdate>20150918</startdate><enddate>20150918</enddate><creator>Lei, Yu</creator><creator>Chen, Ming</creator><creator>Xiong, Guanglei</creator><creator>Chen, Jie</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-6981-3363</orcidid></search><sort><creationdate>20150918</creationdate><title>Influence of virtual intervention and blood rheology on mass transfer through thoracic aortic aneurysm</title><author>Lei, Yu ; Chen, Ming ; Xiong, Guanglei ; Chen, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-fe09eaa5ad0758e97ed9396306e4f16da30c6d38d77282fd2f5f1e64fe754d193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aneurysm</topic><topic>Aneurysms</topic><topic>Aorta, Thoracic - physiopathology</topic><topic>Aortic Aneurysm, Thoracic - physiopathology</topic><topic>Aortic Aneurysm, Thoracic - therapy</topic><topic>Atherosclerosis</topic><topic>Atherosclerosis - physiopathology</topic><topic>Biomechanical Phenomena</topic><topic>Blood</topic><topic>Blood flow</topic><topic>Computer Simulation</topic><topic>Coronary vessels</topic><topic>Fluid dynamics</topic><topic>Flux</topic><topic>Grafting</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Hypoxia</topic><topic>Low-density lipoprotein</topic><topic>Mass transfer</topic><topic>Models, Biological</topic><topic>Non-Newtonian</topic><topic>Oxygen transport</topic><topic>Permeability</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Regional Blood Flow</topic><topic>Reynolds number</topic><topic>Rheology</topic><topic>Shear stress</topic><topic>Stent graft</topic><topic>Stents</topic><topic>Studies</topic><topic>Surgical implants</topic><topic>Transport</topic><topic>Veins & arteries</topic><topic>Wall shear stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Yu</creatorcontrib><creatorcontrib>Chen, Ming</creatorcontrib><creatorcontrib>Xiong, Guanglei</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Yu</au><au>Chen, Ming</au><au>Xiong, Guanglei</au><au>Chen, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of virtual intervention and blood rheology on mass transfer through thoracic aortic aneurysm</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2015-09-18</date><risdate>2015</risdate><volume>48</volume><issue>12</issue><spage>3312</spage><epage>3322</epage><pages>3312-3322</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Abstract Computational fluid dynamics tools have been used to investigate blood flow through the human thoracic aortic models with aneurysm before and after virtual stent graft operation. The impact of blood rheology and aortic geometry on the wall shear stress (WSS), luminal surface low-density lipoproteins (LDL) concentration, and oxygen flux along the arterial wall is investigated. The stent graft at the aneurysm has significant effects on WSS and mass transport in blood flow. Due to the low flow rate, Newtonian blood assumption generally under-estimates the WSS. The non-Newtonian blood rheology play an important role in the LDL transport as well as oxygen transport. It is found that WSS alone is insufficient to correctly predict the location with high risk of atherogenesis. The results suggest that WSS, luminal surface LDL concentration, and the oxygen flux on the wall have to be considered together to evaluate the performance of virtual operation.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>26303169</pmid><doi>10.1016/j.jbiomech.2015.06.022</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6981-3363</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9290 |
ispartof | Journal of biomechanics, 2015-09, Vol.48 (12), p.3312-3322 |
issn | 0021-9290 1873-2380 |
language | eng |
recordid | cdi_proquest_miscellaneous_1837344493 |
source | MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland |
subjects | Aneurysm Aneurysms Aorta, Thoracic - physiopathology Aortic Aneurysm, Thoracic - physiopathology Aortic Aneurysm, Thoracic - therapy Atherosclerosis Atherosclerosis - physiopathology Biomechanical Phenomena Blood Blood flow Computer Simulation Coronary vessels Fluid dynamics Flux Grafting Hemodynamics Humans Hydrodynamics Hypoxia Low-density lipoprotein Mass transfer Models, Biological Non-Newtonian Oxygen transport Permeability Physical Medicine and Rehabilitation Regional Blood Flow Reynolds number Rheology Shear stress Stent graft Stents Studies Surgical implants Transport Veins & arteries Wall shear stress |
title | Influence of virtual intervention and blood rheology on mass transfer through thoracic aortic aneurysm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T20%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20virtual%20intervention%20and%20blood%20rheology%20on%20mass%20transfer%20through%20thoracic%20aortic%20aneurysm&rft.jtitle=Journal%20of%20biomechanics&rft.au=Lei,%20Yu&rft.date=2015-09-18&rft.volume=48&rft.issue=12&rft.spage=3312&rft.epage=3322&rft.pages=3312-3322&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2015.06.022&rft_dat=%3Cproquest_cross%3E1718909842%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718119104&rft_id=info:pmid/26303169&rft_els_id=S0021929015003590&rfr_iscdi=true |