Prediction of acute toxicity of phenol derivatives using multiple linear regression approach for Tetrahymena pyriformis contaminant identification in a median-size database
In this article, the modeling of inhibitory grown activity against Tetrahymena pyriformis is described. The 0-2D Dragon descriptors based on structural aspects to gain some knowledge of factors influencing aquatic toxicity are mainly used. Besides, it is done by some enlarged data of phenol derivati...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2016-12, Vol.165, p.434-441 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 441 |
---|---|
container_issue | |
container_start_page | 434 |
container_title | Chemosphere (Oxford) |
container_volume | 165 |
creator | Dieguez-Santana, Karel Pham-The, Hai Villegas-Aguilar, Pedro J. Le-Thi-Thu, Huong Castillo-Garit, Juan A. Casañola-Martin, Gerardo M. |
description | In this article, the modeling of inhibitory grown activity against Tetrahymena pyriformis is described. The 0-2D Dragon descriptors based on structural aspects to gain some knowledge of factors influencing aquatic toxicity are mainly used. Besides, it is done by some enlarged data of phenol derivatives described for the first time and composed of 358 chemicals. It overcomes the previous datasets with about one hundred compounds. Moreover, the results of the model evaluation by the parameters in the training, prediction and validation give adequate results comparable with those of the previous works. The more influential descriptors included in the model are: X3A, MWC02, MWC10 and piPC03 with positive contributions to the dependent variable; and MWC09, piPC02 and TPC with negative contributions. In a next step, a median-size database of nearly 8000 phenolic compounds extracted from ChEMBL was evaluated with the quantitative-structure toxicity relationship (QSTR) model developed providing some clues (SARs) for identification of ecotoxicological compounds. The outcome of this report is very useful to screen chemical databases for finding the compounds responsible of aquatic contamination in the biomarker used in the current work.
•An enlarged data of 358 phenol derivatives against T. pyriformis overcoming previous datasets.•A median-size database of nearly 8000 ChEMBl phenolic compounds was evaluated with the QSTR model.•Some clues (SARs) for identification of ecotoxicological compounds with acute toxicity profiles. |
doi_str_mv | 10.1016/j.chemosphere.2016.09.041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837336483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653516312310</els_id><sourcerecordid>1837336483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-5a478043172fafdacf170e79de514ec329f19d5ef7f30ed9d8537fe9fe8086ad3</originalsourceid><addsrcrecordid>eNqNUcuOEzEQHCEQGxZ-AZkblwn2vDw-ooiXtBIclrPVa7c3Hc3Yg-2JCN_ER-KQBXHkZKlUXQ9XVb0SfCu4GN4ctmaPc0jLHiNumwJtudryTjyqNmKUqhaNGh9XG867vh76tr-qnqV04Lwwe_W0umrkMIyy4Zvq55eIlkym4FlwDMyakeXwnQzl0xkpHj5MzGKkI2Q6YmJrIn_P5nXKtEzIJvIIkUW8j5jSWQiWJQYwe-ZCZLeYI-xPM3pgyylSwWZKzASfYSYPPjOy6DM5MvA7BxUFNpdY4OtEP5BZyHAHCZ9XTxxMCV88vNfV1_fvbncf65vPHz7t3t7UppNDrnvo5Mi7VsjGgbNgnJAcpbLYiw5N2ygnlO3RSddytMqOfSsdKocjHwew7XX1-qJbanxbMWVdEhucJvAY1qTF2Mq2HbqxLVR1oZoYUoro9BJphnjSguvzWPqg_xlLn8fSXOkyVrl9-WCz3pW6fy__rFMIuwsBS9kjYdTJEHpTviaiydoG-g-bX4dEspA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837336483</pqid></control><display><type>article</type><title>Prediction of acute toxicity of phenol derivatives using multiple linear regression approach for Tetrahymena pyriformis contaminant identification in a median-size database</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Dieguez-Santana, Karel ; Pham-The, Hai ; Villegas-Aguilar, Pedro J. ; Le-Thi-Thu, Huong ; Castillo-Garit, Juan A. ; Casañola-Martin, Gerardo M.</creator><creatorcontrib>Dieguez-Santana, Karel ; Pham-The, Hai ; Villegas-Aguilar, Pedro J. ; Le-Thi-Thu, Huong ; Castillo-Garit, Juan A. ; Casañola-Martin, Gerardo M.</creatorcontrib><description>In this article, the modeling of inhibitory grown activity against Tetrahymena pyriformis is described. The 0-2D Dragon descriptors based on structural aspects to gain some knowledge of factors influencing aquatic toxicity are mainly used. Besides, it is done by some enlarged data of phenol derivatives described for the first time and composed of 358 chemicals. It overcomes the previous datasets with about one hundred compounds. Moreover, the results of the model evaluation by the parameters in the training, prediction and validation give adequate results comparable with those of the previous works. The more influential descriptors included in the model are: X3A, MWC02, MWC10 and piPC03 with positive contributions to the dependent variable; and MWC09, piPC02 and TPC with negative contributions. In a next step, a median-size database of nearly 8000 phenolic compounds extracted from ChEMBL was evaluated with the quantitative-structure toxicity relationship (QSTR) model developed providing some clues (SARs) for identification of ecotoxicological compounds. The outcome of this report is very useful to screen chemical databases for finding the compounds responsible of aquatic contamination in the biomarker used in the current work.
•An enlarged data of 358 phenol derivatives against T. pyriformis overcoming previous datasets.•A median-size database of nearly 8000 ChEMBl phenolic compounds was evaluated with the QSTR model.•Some clues (SARs) for identification of ecotoxicological compounds with acute toxicity profiles.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2016.09.041</identifier><identifier>PMID: 27668720</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>ChEMBL ; Databases, Factual ; Dragon descriptor ; Linear Models ; Models, Theoretical ; Multiple linear regression ; Phenol ; Phenols - chemistry ; Phenols - toxicity ; QSTR ; Quantitative Structure-Activity Relationship ; Tetrahymena pyriformis ; Tetrahymena pyriformis - drug effects</subject><ispartof>Chemosphere (Oxford), 2016-12, Vol.165, p.434-441</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-5a478043172fafdacf170e79de514ec329f19d5ef7f30ed9d8537fe9fe8086ad3</citedby><cites>FETCH-LOGICAL-c476t-5a478043172fafdacf170e79de514ec329f19d5ef7f30ed9d8537fe9fe8086ad3</cites><orcidid>0000-0003-0383-2032 ; 0000-0003-4064-0566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chemosphere.2016.09.041$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27668720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dieguez-Santana, Karel</creatorcontrib><creatorcontrib>Pham-The, Hai</creatorcontrib><creatorcontrib>Villegas-Aguilar, Pedro J.</creatorcontrib><creatorcontrib>Le-Thi-Thu, Huong</creatorcontrib><creatorcontrib>Castillo-Garit, Juan A.</creatorcontrib><creatorcontrib>Casañola-Martin, Gerardo M.</creatorcontrib><title>Prediction of acute toxicity of phenol derivatives using multiple linear regression approach for Tetrahymena pyriformis contaminant identification in a median-size database</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>In this article, the modeling of inhibitory grown activity against Tetrahymena pyriformis is described. The 0-2D Dragon descriptors based on structural aspects to gain some knowledge of factors influencing aquatic toxicity are mainly used. Besides, it is done by some enlarged data of phenol derivatives described for the first time and composed of 358 chemicals. It overcomes the previous datasets with about one hundred compounds. Moreover, the results of the model evaluation by the parameters in the training, prediction and validation give adequate results comparable with those of the previous works. The more influential descriptors included in the model are: X3A, MWC02, MWC10 and piPC03 with positive contributions to the dependent variable; and MWC09, piPC02 and TPC with negative contributions. In a next step, a median-size database of nearly 8000 phenolic compounds extracted from ChEMBL was evaluated with the quantitative-structure toxicity relationship (QSTR) model developed providing some clues (SARs) for identification of ecotoxicological compounds. The outcome of this report is very useful to screen chemical databases for finding the compounds responsible of aquatic contamination in the biomarker used in the current work.
•An enlarged data of 358 phenol derivatives against T. pyriformis overcoming previous datasets.•A median-size database of nearly 8000 ChEMBl phenolic compounds was evaluated with the QSTR model.•Some clues (SARs) for identification of ecotoxicological compounds with acute toxicity profiles.</description><subject>ChEMBL</subject><subject>Databases, Factual</subject><subject>Dragon descriptor</subject><subject>Linear Models</subject><subject>Models, Theoretical</subject><subject>Multiple linear regression</subject><subject>Phenol</subject><subject>Phenols - chemistry</subject><subject>Phenols - toxicity</subject><subject>QSTR</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Tetrahymena pyriformis</subject><subject>Tetrahymena pyriformis - drug effects</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUcuOEzEQHCEQGxZ-AZkblwn2vDw-ooiXtBIclrPVa7c3Hc3Yg-2JCN_ER-KQBXHkZKlUXQ9XVb0SfCu4GN4ctmaPc0jLHiNumwJtudryTjyqNmKUqhaNGh9XG867vh76tr-qnqV04Lwwe_W0umrkMIyy4Zvq55eIlkym4FlwDMyakeXwnQzl0xkpHj5MzGKkI2Q6YmJrIn_P5nXKtEzIJvIIkUW8j5jSWQiWJQYwe-ZCZLeYI-xPM3pgyylSwWZKzASfYSYPPjOy6DM5MvA7BxUFNpdY4OtEP5BZyHAHCZ9XTxxMCV88vNfV1_fvbncf65vPHz7t3t7UppNDrnvo5Mi7VsjGgbNgnJAcpbLYiw5N2ygnlO3RSddytMqOfSsdKocjHwew7XX1-qJbanxbMWVdEhucJvAY1qTF2Mq2HbqxLVR1oZoYUoro9BJphnjSguvzWPqg_xlLn8fSXOkyVrl9-WCz3pW6fy__rFMIuwsBS9kjYdTJEHpTviaiydoG-g-bX4dEspA</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Dieguez-Santana, Karel</creator><creator>Pham-The, Hai</creator><creator>Villegas-Aguilar, Pedro J.</creator><creator>Le-Thi-Thu, Huong</creator><creator>Castillo-Garit, Juan A.</creator><creator>Casañola-Martin, Gerardo M.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TV</scope><scope>7U7</scope><scope>C1K</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0383-2032</orcidid><orcidid>https://orcid.org/0000-0003-4064-0566</orcidid></search><sort><creationdate>201612</creationdate><title>Prediction of acute toxicity of phenol derivatives using multiple linear regression approach for Tetrahymena pyriformis contaminant identification in a median-size database</title><author>Dieguez-Santana, Karel ; Pham-The, Hai ; Villegas-Aguilar, Pedro J. ; Le-Thi-Thu, Huong ; Castillo-Garit, Juan A. ; Casañola-Martin, Gerardo M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-5a478043172fafdacf170e79de514ec329f19d5ef7f30ed9d8537fe9fe8086ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ChEMBL</topic><topic>Databases, Factual</topic><topic>Dragon descriptor</topic><topic>Linear Models</topic><topic>Models, Theoretical</topic><topic>Multiple linear regression</topic><topic>Phenol</topic><topic>Phenols - chemistry</topic><topic>Phenols - toxicity</topic><topic>QSTR</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Tetrahymena pyriformis</topic><topic>Tetrahymena pyriformis - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dieguez-Santana, Karel</creatorcontrib><creatorcontrib>Pham-The, Hai</creatorcontrib><creatorcontrib>Villegas-Aguilar, Pedro J.</creatorcontrib><creatorcontrib>Le-Thi-Thu, Huong</creatorcontrib><creatorcontrib>Castillo-Garit, Juan A.</creatorcontrib><creatorcontrib>Casañola-Martin, Gerardo M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dieguez-Santana, Karel</au><au>Pham-The, Hai</au><au>Villegas-Aguilar, Pedro J.</au><au>Le-Thi-Thu, Huong</au><au>Castillo-Garit, Juan A.</au><au>Casañola-Martin, Gerardo M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of acute toxicity of phenol derivatives using multiple linear regression approach for Tetrahymena pyriformis contaminant identification in a median-size database</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2016-12</date><risdate>2016</risdate><volume>165</volume><spage>434</spage><epage>441</epage><pages>434-441</pages><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>In this article, the modeling of inhibitory grown activity against Tetrahymena pyriformis is described. The 0-2D Dragon descriptors based on structural aspects to gain some knowledge of factors influencing aquatic toxicity are mainly used. Besides, it is done by some enlarged data of phenol derivatives described for the first time and composed of 358 chemicals. It overcomes the previous datasets with about one hundred compounds. Moreover, the results of the model evaluation by the parameters in the training, prediction and validation give adequate results comparable with those of the previous works. The more influential descriptors included in the model are: X3A, MWC02, MWC10 and piPC03 with positive contributions to the dependent variable; and MWC09, piPC02 and TPC with negative contributions. In a next step, a median-size database of nearly 8000 phenolic compounds extracted from ChEMBL was evaluated with the quantitative-structure toxicity relationship (QSTR) model developed providing some clues (SARs) for identification of ecotoxicological compounds. The outcome of this report is very useful to screen chemical databases for finding the compounds responsible of aquatic contamination in the biomarker used in the current work.
•An enlarged data of 358 phenol derivatives against T. pyriformis overcoming previous datasets.•A median-size database of nearly 8000 ChEMBl phenolic compounds was evaluated with the QSTR model.•Some clues (SARs) for identification of ecotoxicological compounds with acute toxicity profiles.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>27668720</pmid><doi>10.1016/j.chemosphere.2016.09.041</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0383-2032</orcidid><orcidid>https://orcid.org/0000-0003-4064-0566</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-6535 |
ispartof | Chemosphere (Oxford), 2016-12, Vol.165, p.434-441 |
issn | 0045-6535 1879-1298 |
language | eng |
recordid | cdi_proquest_miscellaneous_1837336483 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | ChEMBL Databases, Factual Dragon descriptor Linear Models Models, Theoretical Multiple linear regression Phenol Phenols - chemistry Phenols - toxicity QSTR Quantitative Structure-Activity Relationship Tetrahymena pyriformis Tetrahymena pyriformis - drug effects |
title | Prediction of acute toxicity of phenol derivatives using multiple linear regression approach for Tetrahymena pyriformis contaminant identification in a median-size database |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A18%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20acute%20toxicity%20of%20phenol%20derivatives%20using%20multiple%20linear%20regression%20approach%20for%20Tetrahymena%20pyriformis%20contaminant%20identification%20in%20a%20median-size%20database&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Dieguez-Santana,%20Karel&rft.date=2016-12&rft.volume=165&rft.spage=434&rft.epage=441&rft.pages=434-441&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2016.09.041&rft_dat=%3Cproquest_cross%3E1837336483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1837336483&rft_id=info:pmid/27668720&rft_els_id=S0045653516312310&rfr_iscdi=true |