Prediction of acute toxicity of phenol derivatives using multiple linear regression approach for Tetrahymena pyriformis contaminant identification in a median-size database

In this article, the modeling of inhibitory grown activity against Tetrahymena pyriformis is described. The 0-2D Dragon descriptors based on structural aspects to gain some knowledge of factors influencing aquatic toxicity are mainly used. Besides, it is done by some enlarged data of phenol derivati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2016-12, Vol.165, p.434-441
Hauptverfasser: Dieguez-Santana, Karel, Pham-The, Hai, Villegas-Aguilar, Pedro J., Le-Thi-Thu, Huong, Castillo-Garit, Juan A., Casañola-Martin, Gerardo M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 441
container_issue
container_start_page 434
container_title Chemosphere (Oxford)
container_volume 165
creator Dieguez-Santana, Karel
Pham-The, Hai
Villegas-Aguilar, Pedro J.
Le-Thi-Thu, Huong
Castillo-Garit, Juan A.
Casañola-Martin, Gerardo M.
description In this article, the modeling of inhibitory grown activity against Tetrahymena pyriformis is described. The 0-2D Dragon descriptors based on structural aspects to gain some knowledge of factors influencing aquatic toxicity are mainly used. Besides, it is done by some enlarged data of phenol derivatives described for the first time and composed of 358 chemicals. It overcomes the previous datasets with about one hundred compounds. Moreover, the results of the model evaluation by the parameters in the training, prediction and validation give adequate results comparable with those of the previous works. The more influential descriptors included in the model are: X3A, MWC02, MWC10 and piPC03 with positive contributions to the dependent variable; and MWC09, piPC02 and TPC with negative contributions. In a next step, a median-size database of nearly 8000 phenolic compounds extracted from ChEMBL was evaluated with the quantitative-structure toxicity relationship (QSTR) model developed providing some clues (SARs) for identification of ecotoxicological compounds. The outcome of this report is very useful to screen chemical databases for finding the compounds responsible of aquatic contamination in the biomarker used in the current work. •An enlarged data of 358 phenol derivatives against T. pyriformis overcoming previous datasets.•A median-size database of nearly 8000 ChEMBl phenolic compounds was evaluated with the QSTR model.•Some clues (SARs) for identification of ecotoxicological compounds with acute toxicity profiles.
doi_str_mv 10.1016/j.chemosphere.2016.09.041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837336483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653516312310</els_id><sourcerecordid>1837336483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-5a478043172fafdacf170e79de514ec329f19d5ef7f30ed9d8537fe9fe8086ad3</originalsourceid><addsrcrecordid>eNqNUcuOEzEQHCEQGxZ-AZkblwn2vDw-ooiXtBIclrPVa7c3Hc3Yg-2JCN_ER-KQBXHkZKlUXQ9XVb0SfCu4GN4ctmaPc0jLHiNumwJtudryTjyqNmKUqhaNGh9XG867vh76tr-qnqV04Lwwe_W0umrkMIyy4Zvq55eIlkym4FlwDMyakeXwnQzl0xkpHj5MzGKkI2Q6YmJrIn_P5nXKtEzIJvIIkUW8j5jSWQiWJQYwe-ZCZLeYI-xPM3pgyylSwWZKzASfYSYPPjOy6DM5MvA7BxUFNpdY4OtEP5BZyHAHCZ9XTxxMCV88vNfV1_fvbncf65vPHz7t3t7UppNDrnvo5Mi7VsjGgbNgnJAcpbLYiw5N2ygnlO3RSddytMqOfSsdKocjHwew7XX1-qJbanxbMWVdEhucJvAY1qTF2Mq2HbqxLVR1oZoYUoro9BJphnjSguvzWPqg_xlLn8fSXOkyVrl9-WCz3pW6fy__rFMIuwsBS9kjYdTJEHpTviaiydoG-g-bX4dEspA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837336483</pqid></control><display><type>article</type><title>Prediction of acute toxicity of phenol derivatives using multiple linear regression approach for Tetrahymena pyriformis contaminant identification in a median-size database</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Dieguez-Santana, Karel ; Pham-The, Hai ; Villegas-Aguilar, Pedro J. ; Le-Thi-Thu, Huong ; Castillo-Garit, Juan A. ; Casañola-Martin, Gerardo M.</creator><creatorcontrib>Dieguez-Santana, Karel ; Pham-The, Hai ; Villegas-Aguilar, Pedro J. ; Le-Thi-Thu, Huong ; Castillo-Garit, Juan A. ; Casañola-Martin, Gerardo M.</creatorcontrib><description>In this article, the modeling of inhibitory grown activity against Tetrahymena pyriformis is described. The 0-2D Dragon descriptors based on structural aspects to gain some knowledge of factors influencing aquatic toxicity are mainly used. Besides, it is done by some enlarged data of phenol derivatives described for the first time and composed of 358 chemicals. It overcomes the previous datasets with about one hundred compounds. Moreover, the results of the model evaluation by the parameters in the training, prediction and validation give adequate results comparable with those of the previous works. The more influential descriptors included in the model are: X3A, MWC02, MWC10 and piPC03 with positive contributions to the dependent variable; and MWC09, piPC02 and TPC with negative contributions. In a next step, a median-size database of nearly 8000 phenolic compounds extracted from ChEMBL was evaluated with the quantitative-structure toxicity relationship (QSTR) model developed providing some clues (SARs) for identification of ecotoxicological compounds. The outcome of this report is very useful to screen chemical databases for finding the compounds responsible of aquatic contamination in the biomarker used in the current work. •An enlarged data of 358 phenol derivatives against T. pyriformis overcoming previous datasets.•A median-size database of nearly 8000 ChEMBl phenolic compounds was evaluated with the QSTR model.•Some clues (SARs) for identification of ecotoxicological compounds with acute toxicity profiles.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2016.09.041</identifier><identifier>PMID: 27668720</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>ChEMBL ; Databases, Factual ; Dragon descriptor ; Linear Models ; Models, Theoretical ; Multiple linear regression ; Phenol ; Phenols - chemistry ; Phenols - toxicity ; QSTR ; Quantitative Structure-Activity Relationship ; Tetrahymena pyriformis ; Tetrahymena pyriformis - drug effects</subject><ispartof>Chemosphere (Oxford), 2016-12, Vol.165, p.434-441</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-5a478043172fafdacf170e79de514ec329f19d5ef7f30ed9d8537fe9fe8086ad3</citedby><cites>FETCH-LOGICAL-c476t-5a478043172fafdacf170e79de514ec329f19d5ef7f30ed9d8537fe9fe8086ad3</cites><orcidid>0000-0003-0383-2032 ; 0000-0003-4064-0566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.chemosphere.2016.09.041$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27668720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dieguez-Santana, Karel</creatorcontrib><creatorcontrib>Pham-The, Hai</creatorcontrib><creatorcontrib>Villegas-Aguilar, Pedro J.</creatorcontrib><creatorcontrib>Le-Thi-Thu, Huong</creatorcontrib><creatorcontrib>Castillo-Garit, Juan A.</creatorcontrib><creatorcontrib>Casañola-Martin, Gerardo M.</creatorcontrib><title>Prediction of acute toxicity of phenol derivatives using multiple linear regression approach for Tetrahymena pyriformis contaminant identification in a median-size database</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>In this article, the modeling of inhibitory grown activity against Tetrahymena pyriformis is described. The 0-2D Dragon descriptors based on structural aspects to gain some knowledge of factors influencing aquatic toxicity are mainly used. Besides, it is done by some enlarged data of phenol derivatives described for the first time and composed of 358 chemicals. It overcomes the previous datasets with about one hundred compounds. Moreover, the results of the model evaluation by the parameters in the training, prediction and validation give adequate results comparable with those of the previous works. The more influential descriptors included in the model are: X3A, MWC02, MWC10 and piPC03 with positive contributions to the dependent variable; and MWC09, piPC02 and TPC with negative contributions. In a next step, a median-size database of nearly 8000 phenolic compounds extracted from ChEMBL was evaluated with the quantitative-structure toxicity relationship (QSTR) model developed providing some clues (SARs) for identification of ecotoxicological compounds. The outcome of this report is very useful to screen chemical databases for finding the compounds responsible of aquatic contamination in the biomarker used in the current work. •An enlarged data of 358 phenol derivatives against T. pyriformis overcoming previous datasets.•A median-size database of nearly 8000 ChEMBl phenolic compounds was evaluated with the QSTR model.•Some clues (SARs) for identification of ecotoxicological compounds with acute toxicity profiles.</description><subject>ChEMBL</subject><subject>Databases, Factual</subject><subject>Dragon descriptor</subject><subject>Linear Models</subject><subject>Models, Theoretical</subject><subject>Multiple linear regression</subject><subject>Phenol</subject><subject>Phenols - chemistry</subject><subject>Phenols - toxicity</subject><subject>QSTR</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Tetrahymena pyriformis</subject><subject>Tetrahymena pyriformis - drug effects</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUcuOEzEQHCEQGxZ-AZkblwn2vDw-ooiXtBIclrPVa7c3Hc3Yg-2JCN_ER-KQBXHkZKlUXQ9XVb0SfCu4GN4ctmaPc0jLHiNumwJtudryTjyqNmKUqhaNGh9XG867vh76tr-qnqV04Lwwe_W0umrkMIyy4Zvq55eIlkym4FlwDMyakeXwnQzl0xkpHj5MzGKkI2Q6YmJrIn_P5nXKtEzIJvIIkUW8j5jSWQiWJQYwe-ZCZLeYI-xPM3pgyylSwWZKzASfYSYPPjOy6DM5MvA7BxUFNpdY4OtEP5BZyHAHCZ9XTxxMCV88vNfV1_fvbncf65vPHz7t3t7UppNDrnvo5Mi7VsjGgbNgnJAcpbLYiw5N2ygnlO3RSddytMqOfSsdKocjHwew7XX1-qJbanxbMWVdEhucJvAY1qTF2Mq2HbqxLVR1oZoYUoro9BJphnjSguvzWPqg_xlLn8fSXOkyVrl9-WCz3pW6fy__rFMIuwsBS9kjYdTJEHpTviaiydoG-g-bX4dEspA</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Dieguez-Santana, Karel</creator><creator>Pham-The, Hai</creator><creator>Villegas-Aguilar, Pedro J.</creator><creator>Le-Thi-Thu, Huong</creator><creator>Castillo-Garit, Juan A.</creator><creator>Casañola-Martin, Gerardo M.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TV</scope><scope>7U7</scope><scope>C1K</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0383-2032</orcidid><orcidid>https://orcid.org/0000-0003-4064-0566</orcidid></search><sort><creationdate>201612</creationdate><title>Prediction of acute toxicity of phenol derivatives using multiple linear regression approach for Tetrahymena pyriformis contaminant identification in a median-size database</title><author>Dieguez-Santana, Karel ; Pham-The, Hai ; Villegas-Aguilar, Pedro J. ; Le-Thi-Thu, Huong ; Castillo-Garit, Juan A. ; Casañola-Martin, Gerardo M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-5a478043172fafdacf170e79de514ec329f19d5ef7f30ed9d8537fe9fe8086ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ChEMBL</topic><topic>Databases, Factual</topic><topic>Dragon descriptor</topic><topic>Linear Models</topic><topic>Models, Theoretical</topic><topic>Multiple linear regression</topic><topic>Phenol</topic><topic>Phenols - chemistry</topic><topic>Phenols - toxicity</topic><topic>QSTR</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Tetrahymena pyriformis</topic><topic>Tetrahymena pyriformis - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dieguez-Santana, Karel</creatorcontrib><creatorcontrib>Pham-The, Hai</creatorcontrib><creatorcontrib>Villegas-Aguilar, Pedro J.</creatorcontrib><creatorcontrib>Le-Thi-Thu, Huong</creatorcontrib><creatorcontrib>Castillo-Garit, Juan A.</creatorcontrib><creatorcontrib>Casañola-Martin, Gerardo M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dieguez-Santana, Karel</au><au>Pham-The, Hai</au><au>Villegas-Aguilar, Pedro J.</au><au>Le-Thi-Thu, Huong</au><au>Castillo-Garit, Juan A.</au><au>Casañola-Martin, Gerardo M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of acute toxicity of phenol derivatives using multiple linear regression approach for Tetrahymena pyriformis contaminant identification in a median-size database</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2016-12</date><risdate>2016</risdate><volume>165</volume><spage>434</spage><epage>441</epage><pages>434-441</pages><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>In this article, the modeling of inhibitory grown activity against Tetrahymena pyriformis is described. The 0-2D Dragon descriptors based on structural aspects to gain some knowledge of factors influencing aquatic toxicity are mainly used. Besides, it is done by some enlarged data of phenol derivatives described for the first time and composed of 358 chemicals. It overcomes the previous datasets with about one hundred compounds. Moreover, the results of the model evaluation by the parameters in the training, prediction and validation give adequate results comparable with those of the previous works. The more influential descriptors included in the model are: X3A, MWC02, MWC10 and piPC03 with positive contributions to the dependent variable; and MWC09, piPC02 and TPC with negative contributions. In a next step, a median-size database of nearly 8000 phenolic compounds extracted from ChEMBL was evaluated with the quantitative-structure toxicity relationship (QSTR) model developed providing some clues (SARs) for identification of ecotoxicological compounds. The outcome of this report is very useful to screen chemical databases for finding the compounds responsible of aquatic contamination in the biomarker used in the current work. •An enlarged data of 358 phenol derivatives against T. pyriformis overcoming previous datasets.•A median-size database of nearly 8000 ChEMBl phenolic compounds was evaluated with the QSTR model.•Some clues (SARs) for identification of ecotoxicological compounds with acute toxicity profiles.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>27668720</pmid><doi>10.1016/j.chemosphere.2016.09.041</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0383-2032</orcidid><orcidid>https://orcid.org/0000-0003-4064-0566</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-6535
ispartof Chemosphere (Oxford), 2016-12, Vol.165, p.434-441
issn 0045-6535
1879-1298
language eng
recordid cdi_proquest_miscellaneous_1837336483
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects ChEMBL
Databases, Factual
Dragon descriptor
Linear Models
Models, Theoretical
Multiple linear regression
Phenol
Phenols - chemistry
Phenols - toxicity
QSTR
Quantitative Structure-Activity Relationship
Tetrahymena pyriformis
Tetrahymena pyriformis - drug effects
title Prediction of acute toxicity of phenol derivatives using multiple linear regression approach for Tetrahymena pyriformis contaminant identification in a median-size database
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A18%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20acute%20toxicity%20of%20phenol%20derivatives%20using%20multiple%20linear%20regression%20approach%20for%20Tetrahymena%20pyriformis%20contaminant%20identification%20in%20a%20median-size%20database&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Dieguez-Santana,%20Karel&rft.date=2016-12&rft.volume=165&rft.spage=434&rft.epage=441&rft.pages=434-441&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2016.09.041&rft_dat=%3Cproquest_cross%3E1837336483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1837336483&rft_id=info:pmid/27668720&rft_els_id=S0045653516312310&rfr_iscdi=true