Sustainable heterologous production of terpene hydrocarbons in cyanobacteria
Cyanobacteria can be exploited as photosynthetic platforms for heterologous generation of terpene hydrocarbons with industrial application. However, the slow catalytic activity of terpene synthases ( k cat = 4 s −1 or slower) makes them noncompetitive for the pool of available substrate, thereby li...
Gespeichert in:
Veröffentlicht in: | Photosynthesis research 2016-12, Vol.130 (1-3), p.123-135 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 135 |
---|---|
container_issue | 1-3 |
container_start_page | 123 |
container_title | Photosynthesis research |
container_volume | 130 |
creator | Formighieri, Cinzia Melis, Anastasios |
description | Cyanobacteria can be exploited as photosynthetic platforms for heterologous generation of terpene hydrocarbons with industrial application. However, the slow catalytic activity of terpene synthases (
k
cat
= 4 s
−1
or slower) makes them noncompetitive for the pool of available substrate, thereby limiting the rate and yield of product generation. Work in this paper applied transformation technologies in
Synechocystis
for the heterologous production of β-phellandrene (monoterpene) hydrocarbons. Conditions were defined whereby expression of the β-phellandrene synthase (PHLS), as a CpcB·PHLS fusion protein with the β-subunit of phycocyanin, accounted for up to 20 % of total cellular protein. Moreover, CpcB·PHLS was heterologously co-expressed with enzymes of the mevalonic acid (MVA) pathway and geranyl-diphosphate synthase, increasing carbon flux toward the terpenoid biosynthetic pathway and enhancing substrate availability. These improvements enabled yields of 10 mg of β-phellandrene per g of dry cell weight generated in the course of a 48-h incubation period, or the equivalent of 1 % β-phellandrene:biomass (w:w) carbon-partitioning ratio. The work helped to identify prerequisites for the efficient heterologous production of terpene hydrocarbons in cyanobacteria: (i) requirement for overexpression of the heterologous terpene synthase, so as to compensate for the slow catalytic turnover of the enzyme, and (ii) enhanced endogenous carbon partitioning toward the terpenoid biosynthetic pathway, e.g., upon heterologous co-expression of the MVA pathway, thereby supplementing the native metabolic flux toward the universal isopentenyl-diphosphate and dimethylallyl-diphosphate terpenoid precursors. The two prerequisites are shown to be critical determinants of yield in the photosynthetic CO
2
to terpene hydrocarbons conversion process. |
doi_str_mv | 10.1007/s11120-016-0233-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837332633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A470700958</galeid><sourcerecordid>A470700958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-37d5189809a586867d55b0cbc11958edc6c691acdf2b7af264c51eb01cd3f4683</originalsourceid><addsrcrecordid>eNqNkV9rFDEUxYNY7Lr6AXyRAV_sw9R7k8mfeSxFa2FBaPU5ZDKZNWU2WZMZcL-92U4VKxQkDyE5v3Nzbw4hbxDOEUB-yIhIoQYUNVDGavqMrJBLVnOQ7XOyKoKoFW_5KXmZ8x0AKIHsBTmlQrW8YXJFNrdznowPphtd9d1NLsUxbuOcq32K_WwnH0MVh6oIexcKcuhTtCZ1MeTKh8oeTIidsUX35hU5GcyY3euHfU2-ffr49fJzvflydX15saktRz7VTPYcVaugNVwJJcqRd2A7i9hy5XorrGjR2H6gnTQDFU3xuQ7Q9mxohGJr8n6pW3r8Mbs86Z3P1o2jCa60rlExyRgVjP0HSoUQgOX_1uTdP-hdnFMog9xTDYrl7fOF2prRaR-GOCVjy-rdztsY3ODL_UUjQQKUcYrh7JGhMJP7OW3NnLO-vr15zOLC2hRzTm7Q--R3Jh00gj5GrpfIdUlWHyPXx7bfPrQ9dzvX_3H8zrgAdAFykcLWpb_merLqLy_HtIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826416468</pqid></control><display><type>article</type><title>Sustainable heterologous production of terpene hydrocarbons in cyanobacteria</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Formighieri, Cinzia ; Melis, Anastasios</creator><creatorcontrib>Formighieri, Cinzia ; Melis, Anastasios</creatorcontrib><description>Cyanobacteria can be exploited as photosynthetic platforms for heterologous generation of terpene hydrocarbons with industrial application. However, the slow catalytic activity of terpene synthases (
k
cat
= 4 s
−1
or slower) makes them noncompetitive for the pool of available substrate, thereby limiting the rate and yield of product generation. Work in this paper applied transformation technologies in
Synechocystis
for the heterologous production of β-phellandrene (monoterpene) hydrocarbons. Conditions were defined whereby expression of the β-phellandrene synthase (PHLS), as a CpcB·PHLS fusion protein with the β-subunit of phycocyanin, accounted for up to 20 % of total cellular protein. Moreover, CpcB·PHLS was heterologously co-expressed with enzymes of the mevalonic acid (MVA) pathway and geranyl-diphosphate synthase, increasing carbon flux toward the terpenoid biosynthetic pathway and enhancing substrate availability. These improvements enabled yields of 10 mg of β-phellandrene per g of dry cell weight generated in the course of a 48-h incubation period, or the equivalent of 1 % β-phellandrene:biomass (w:w) carbon-partitioning ratio. The work helped to identify prerequisites for the efficient heterologous production of terpene hydrocarbons in cyanobacteria: (i) requirement for overexpression of the heterologous terpene synthase, so as to compensate for the slow catalytic turnover of the enzyme, and (ii) enhanced endogenous carbon partitioning toward the terpenoid biosynthetic pathway, e.g., upon heterologous co-expression of the MVA pathway, thereby supplementing the native metabolic flux toward the universal isopentenyl-diphosphate and dimethylallyl-diphosphate terpenoid precursors. The two prerequisites are shown to be critical determinants of yield in the photosynthetic CO
2
to terpene hydrocarbons conversion process.</description><identifier>ISSN: 0166-8595</identifier><identifier>EISSN: 1573-5079</identifier><identifier>DOI: 10.1007/s11120-016-0233-2</identifier><identifier>PMID: 26895437</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Biosynthesis ; Biosynthetic Pathways ; Carbon dioxide ; Cellular proteins ; Cyanobacteria ; DNA, Bacterial - genetics ; Enzymes ; Green Chemistry Technology - methods ; Hydrocarbons ; Hydrocarbons - metabolism ; Life Sciences ; Metabolic Engineering - methods ; Organisms, Genetically Modified ; Original Article ; Photosynthesis ; Plant Genetics and Genomics ; Plant Physiology ; Plant Sciences ; Synechocystis ; Synechocystis - genetics ; Synechocystis - metabolism ; Terpenes - metabolism</subject><ispartof>Photosynthesis research, 2016-12, Vol.130 (1-3), p.123-135</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>COPYRIGHT 2016 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-37d5189809a586867d55b0cbc11958edc6c691acdf2b7af264c51eb01cd3f4683</citedby><cites>FETCH-LOGICAL-c515t-37d5189809a586867d55b0cbc11958edc6c691acdf2b7af264c51eb01cd3f4683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11120-016-0233-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11120-016-0233-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26895437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Formighieri, Cinzia</creatorcontrib><creatorcontrib>Melis, Anastasios</creatorcontrib><title>Sustainable heterologous production of terpene hydrocarbons in cyanobacteria</title><title>Photosynthesis research</title><addtitle>Photosynth Res</addtitle><addtitle>Photosynth Res</addtitle><description>Cyanobacteria can be exploited as photosynthetic platforms for heterologous generation of terpene hydrocarbons with industrial application. However, the slow catalytic activity of terpene synthases (
k
cat
= 4 s
−1
or slower) makes them noncompetitive for the pool of available substrate, thereby limiting the rate and yield of product generation. Work in this paper applied transformation technologies in
Synechocystis
for the heterologous production of β-phellandrene (monoterpene) hydrocarbons. Conditions were defined whereby expression of the β-phellandrene synthase (PHLS), as a CpcB·PHLS fusion protein with the β-subunit of phycocyanin, accounted for up to 20 % of total cellular protein. Moreover, CpcB·PHLS was heterologously co-expressed with enzymes of the mevalonic acid (MVA) pathway and geranyl-diphosphate synthase, increasing carbon flux toward the terpenoid biosynthetic pathway and enhancing substrate availability. These improvements enabled yields of 10 mg of β-phellandrene per g of dry cell weight generated in the course of a 48-h incubation period, or the equivalent of 1 % β-phellandrene:biomass (w:w) carbon-partitioning ratio. The work helped to identify prerequisites for the efficient heterologous production of terpene hydrocarbons in cyanobacteria: (i) requirement for overexpression of the heterologous terpene synthase, so as to compensate for the slow catalytic turnover of the enzyme, and (ii) enhanced endogenous carbon partitioning toward the terpenoid biosynthetic pathway, e.g., upon heterologous co-expression of the MVA pathway, thereby supplementing the native metabolic flux toward the universal isopentenyl-diphosphate and dimethylallyl-diphosphate terpenoid precursors. The two prerequisites are shown to be critical determinants of yield in the photosynthetic CO
2
to terpene hydrocarbons conversion process.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biosynthetic Pathways</subject><subject>Carbon dioxide</subject><subject>Cellular proteins</subject><subject>Cyanobacteria</subject><subject>DNA, Bacterial - genetics</subject><subject>Enzymes</subject><subject>Green Chemistry Technology - methods</subject><subject>Hydrocarbons</subject><subject>Hydrocarbons - metabolism</subject><subject>Life Sciences</subject><subject>Metabolic Engineering - methods</subject><subject>Organisms, Genetically Modified</subject><subject>Original Article</subject><subject>Photosynthesis</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Synechocystis</subject><subject>Synechocystis - genetics</subject><subject>Synechocystis - metabolism</subject><subject>Terpenes - metabolism</subject><issn>0166-8595</issn><issn>1573-5079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkV9rFDEUxYNY7Lr6AXyRAV_sw9R7k8mfeSxFa2FBaPU5ZDKZNWU2WZMZcL-92U4VKxQkDyE5v3Nzbw4hbxDOEUB-yIhIoQYUNVDGavqMrJBLVnOQ7XOyKoKoFW_5KXmZ8x0AKIHsBTmlQrW8YXJFNrdznowPphtd9d1NLsUxbuOcq32K_WwnH0MVh6oIexcKcuhTtCZ1MeTKh8oeTIidsUX35hU5GcyY3euHfU2-ffr49fJzvflydX15saktRz7VTPYcVaugNVwJJcqRd2A7i9hy5XorrGjR2H6gnTQDFU3xuQ7Q9mxohGJr8n6pW3r8Mbs86Z3P1o2jCa60rlExyRgVjP0HSoUQgOX_1uTdP-hdnFMog9xTDYrl7fOF2prRaR-GOCVjy-rdztsY3ODL_UUjQQKUcYrh7JGhMJP7OW3NnLO-vr15zOLC2hRzTm7Q--R3Jh00gj5GrpfIdUlWHyPXx7bfPrQ9dzvX_3H8zrgAdAFykcLWpb_merLqLy_HtIQ</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Formighieri, Cinzia</creator><creator>Melis, Anastasios</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20161201</creationdate><title>Sustainable heterologous production of terpene hydrocarbons in cyanobacteria</title><author>Formighieri, Cinzia ; Melis, Anastasios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-37d5189809a586867d55b0cbc11958edc6c691acdf2b7af264c51eb01cd3f4683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biosynthetic Pathways</topic><topic>Carbon dioxide</topic><topic>Cellular proteins</topic><topic>Cyanobacteria</topic><topic>DNA, Bacterial - genetics</topic><topic>Enzymes</topic><topic>Green Chemistry Technology - methods</topic><topic>Hydrocarbons</topic><topic>Hydrocarbons - metabolism</topic><topic>Life Sciences</topic><topic>Metabolic Engineering - methods</topic><topic>Organisms, Genetically Modified</topic><topic>Original Article</topic><topic>Photosynthesis</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Synechocystis</topic><topic>Synechocystis - genetics</topic><topic>Synechocystis - metabolism</topic><topic>Terpenes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Formighieri, Cinzia</creatorcontrib><creatorcontrib>Melis, Anastasios</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Photosynthesis research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Formighieri, Cinzia</au><au>Melis, Anastasios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sustainable heterologous production of terpene hydrocarbons in cyanobacteria</atitle><jtitle>Photosynthesis research</jtitle><stitle>Photosynth Res</stitle><addtitle>Photosynth Res</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>130</volume><issue>1-3</issue><spage>123</spage><epage>135</epage><pages>123-135</pages><issn>0166-8595</issn><eissn>1573-5079</eissn><abstract>Cyanobacteria can be exploited as photosynthetic platforms for heterologous generation of terpene hydrocarbons with industrial application. However, the slow catalytic activity of terpene synthases (
k
cat
= 4 s
−1
or slower) makes them noncompetitive for the pool of available substrate, thereby limiting the rate and yield of product generation. Work in this paper applied transformation technologies in
Synechocystis
for the heterologous production of β-phellandrene (monoterpene) hydrocarbons. Conditions were defined whereby expression of the β-phellandrene synthase (PHLS), as a CpcB·PHLS fusion protein with the β-subunit of phycocyanin, accounted for up to 20 % of total cellular protein. Moreover, CpcB·PHLS was heterologously co-expressed with enzymes of the mevalonic acid (MVA) pathway and geranyl-diphosphate synthase, increasing carbon flux toward the terpenoid biosynthetic pathway and enhancing substrate availability. These improvements enabled yields of 10 mg of β-phellandrene per g of dry cell weight generated in the course of a 48-h incubation period, or the equivalent of 1 % β-phellandrene:biomass (w:w) carbon-partitioning ratio. The work helped to identify prerequisites for the efficient heterologous production of terpene hydrocarbons in cyanobacteria: (i) requirement for overexpression of the heterologous terpene synthase, so as to compensate for the slow catalytic turnover of the enzyme, and (ii) enhanced endogenous carbon partitioning toward the terpenoid biosynthetic pathway, e.g., upon heterologous co-expression of the MVA pathway, thereby supplementing the native metabolic flux toward the universal isopentenyl-diphosphate and dimethylallyl-diphosphate terpenoid precursors. The two prerequisites are shown to be critical determinants of yield in the photosynthetic CO
2
to terpene hydrocarbons conversion process.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>26895437</pmid><doi>10.1007/s11120-016-0233-2</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-8595 |
ispartof | Photosynthesis research, 2016-12, Vol.130 (1-3), p.123-135 |
issn | 0166-8595 1573-5079 |
language | eng |
recordid | cdi_proquest_miscellaneous_1837332633 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Biochemistry Biomedical and Life Sciences Biosynthesis Biosynthetic Pathways Carbon dioxide Cellular proteins Cyanobacteria DNA, Bacterial - genetics Enzymes Green Chemistry Technology - methods Hydrocarbons Hydrocarbons - metabolism Life Sciences Metabolic Engineering - methods Organisms, Genetically Modified Original Article Photosynthesis Plant Genetics and Genomics Plant Physiology Plant Sciences Synechocystis Synechocystis - genetics Synechocystis - metabolism Terpenes - metabolism |
title | Sustainable heterologous production of terpene hydrocarbons in cyanobacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sustainable%20heterologous%20production%20of%20terpene%20hydrocarbons%20in%20cyanobacteria&rft.jtitle=Photosynthesis%20research&rft.au=Formighieri,%20Cinzia&rft.date=2016-12-01&rft.volume=130&rft.issue=1-3&rft.spage=123&rft.epage=135&rft.pages=123-135&rft.issn=0166-8595&rft.eissn=1573-5079&rft_id=info:doi/10.1007/s11120-016-0233-2&rft_dat=%3Cgale_proqu%3EA470700958%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826416468&rft_id=info:pmid/26895437&rft_galeid=A470700958&rfr_iscdi=true |