The role of protein dynamics in the evolution of new enzyme function
Analysis of the structures and dynamics of intermediates and engineered mutants from directed protein evolution experiments reveals how dynamic conformational changes are harnessed across evolutionary trajectories to generate new catalytic functions. Enzymes must be ordered to allow the stabilizatio...
Gespeichert in:
Veröffentlicht in: | Nature chemical biology 2016-11, Vol.12 (11), p.944-950 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 950 |
---|---|
container_issue | 11 |
container_start_page | 944 |
container_title | Nature chemical biology |
container_volume | 12 |
creator | Campbell, Eleanor Kaltenbach, Miriam Correy, Galen J Carr, Paul D Porebski, Benjamin T Livingstone, Emma K Afriat-Jurnou, Livnat Buckle, Ashley M Weik, Martin Hollfelder, Florian Tokuriki, Nobuhiko Jackson, Colin J |
description | Analysis of the structures and dynamics of intermediates and engineered mutants from directed protein evolution experiments reveals how dynamic conformational changes are harnessed across evolutionary trajectories to generate new catalytic functions.
Enzymes must be ordered to allow the stabilization of transition states by their active sites, yet dynamic enough to adopt alternative conformations suited to other steps in their catalytic cycles. The biophysical principles that determine how specific protein dynamics evolve and how remote mutations affect catalytic activity are poorly understood. Here we examine a 'molecular fossil record' that was recently obtained during the laboratory evolution of a phosphotriesterase from
Pseudomonas diminuta
to an arylesterase. Analysis of the structures and dynamics of nine protein variants along this trajectory, and three rationally designed variants, reveals cycles of structural destabilization and repair, evolutionary pressure to 'freeze out' unproductive motions and sampling of distinct conformations with specific catalytic properties in bi-functional intermediates. This work establishes that changes to the conformational landscapes of proteins are an essential aspect of molecular evolution and that change in function can be achieved through enrichment of preexisting conformational sub-states. |
doi_str_mv | 10.1038/nchembio.2175 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837325465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1837325465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-d1d477f0394ffad643ba25cfe5f0578d78ff75fc69b86b2f553f83e9f81aa9b23</originalsourceid><addsrcrecordid>eNqNkT1PwzAQhi0EoqUwsqJILCwpdhwn9ojKp1SJpcyR45xpqsQudgIqvx5HbRFCDEx3unv03seL0DnBU4IpvzZqCW1Z22lCcnaAxoSxJE7TTBx-5wyP0In3K4xplhF-jEZJHiLhYoxuF0uInG0gsjpaO9tBbaJqY2RbKx-FvAt9eLdN39XWDJCBjwjM56aFSPdGDeVTdKRl4-FsFyfo5f5uMXuM588PT7ObeaxSJrq4IlWa5xpTkWotqyylpUyY0sA0Zjmvcq51zrTKRMmzMtGMUc0pCM2JlKJM6ARdbXXDom89-K5oa6-gaaQB2_uCcJrThKUZ-w_KKE9SMqhe_kJXtncmHDJQVFAWNg5UvKWUs9470MXa1a10m4LgYnCi2DtRDE4E_mKn2pctVN_0_vUBmG4BH1rmFdyPsX8qfgEq55TP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1833935039</pqid></control><display><type>article</type><title>The role of protein dynamics in the evolution of new enzyme function</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Campbell, Eleanor ; Kaltenbach, Miriam ; Correy, Galen J ; Carr, Paul D ; Porebski, Benjamin T ; Livingstone, Emma K ; Afriat-Jurnou, Livnat ; Buckle, Ashley M ; Weik, Martin ; Hollfelder, Florian ; Tokuriki, Nobuhiko ; Jackson, Colin J</creator><creatorcontrib>Campbell, Eleanor ; Kaltenbach, Miriam ; Correy, Galen J ; Carr, Paul D ; Porebski, Benjamin T ; Livingstone, Emma K ; Afriat-Jurnou, Livnat ; Buckle, Ashley M ; Weik, Martin ; Hollfelder, Florian ; Tokuriki, Nobuhiko ; Jackson, Colin J</creatorcontrib><description>Analysis of the structures and dynamics of intermediates and engineered mutants from directed protein evolution experiments reveals how dynamic conformational changes are harnessed across evolutionary trajectories to generate new catalytic functions.
Enzymes must be ordered to allow the stabilization of transition states by their active sites, yet dynamic enough to adopt alternative conformations suited to other steps in their catalytic cycles. The biophysical principles that determine how specific protein dynamics evolve and how remote mutations affect catalytic activity are poorly understood. Here we examine a 'molecular fossil record' that was recently obtained during the laboratory evolution of a phosphotriesterase from
Pseudomonas diminuta
to an arylesterase. Analysis of the structures and dynamics of nine protein variants along this trajectory, and three rationally designed variants, reveals cycles of structural destabilization and repair, evolutionary pressure to 'freeze out' unproductive motions and sampling of distinct conformations with specific catalytic properties in bi-functional intermediates. This work establishes that changes to the conformational landscapes of proteins are an essential aspect of molecular evolution and that change in function can be achieved through enrichment of preexisting conformational sub-states.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/nchembio.2175</identifier><identifier>PMID: 27618189</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/535/1266 ; 631/92/469 ; 631/92/607 ; 631/92/612 ; Biocatalysis ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Biophysics ; Carboxylic Ester Hydrolases - chemistry ; Carboxylic Ester Hydrolases - metabolism ; Cell Biology ; Chemistry ; Chemistry/Food Science ; Crystallography ; Enzymes ; Evolution, Molecular ; Mutation ; Phosphoric Triester Hydrolases - chemistry ; Phosphoric Triester Hydrolases - metabolism ; Protein Conformation ; Proteomics ; Pseudomonas - enzymology ; Pseudomonas diminuta</subject><ispartof>Nature chemical biology, 2016-11, Vol.12 (11), p.944-950</ispartof><rights>Springer Nature America, Inc. 2016</rights><rights>Copyright Nature Publishing Group Nov 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-d1d477f0394ffad643ba25cfe5f0578d78ff75fc69b86b2f553f83e9f81aa9b23</citedby><cites>FETCH-LOGICAL-c459t-d1d477f0394ffad643ba25cfe5f0578d78ff75fc69b86b2f553f83e9f81aa9b23</cites><orcidid>0000-0003-2943-9044 ; 0000-0001-6150-3822 ; 0000-0002-1367-6312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchembio.2175$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchembio.2175$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27618189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Campbell, Eleanor</creatorcontrib><creatorcontrib>Kaltenbach, Miriam</creatorcontrib><creatorcontrib>Correy, Galen J</creatorcontrib><creatorcontrib>Carr, Paul D</creatorcontrib><creatorcontrib>Porebski, Benjamin T</creatorcontrib><creatorcontrib>Livingstone, Emma K</creatorcontrib><creatorcontrib>Afriat-Jurnou, Livnat</creatorcontrib><creatorcontrib>Buckle, Ashley M</creatorcontrib><creatorcontrib>Weik, Martin</creatorcontrib><creatorcontrib>Hollfelder, Florian</creatorcontrib><creatorcontrib>Tokuriki, Nobuhiko</creatorcontrib><creatorcontrib>Jackson, Colin J</creatorcontrib><title>The role of protein dynamics in the evolution of new enzyme function</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>Analysis of the structures and dynamics of intermediates and engineered mutants from directed protein evolution experiments reveals how dynamic conformational changes are harnessed across evolutionary trajectories to generate new catalytic functions.
Enzymes must be ordered to allow the stabilization of transition states by their active sites, yet dynamic enough to adopt alternative conformations suited to other steps in their catalytic cycles. The biophysical principles that determine how specific protein dynamics evolve and how remote mutations affect catalytic activity are poorly understood. Here we examine a 'molecular fossil record' that was recently obtained during the laboratory evolution of a phosphotriesterase from
Pseudomonas diminuta
to an arylesterase. Analysis of the structures and dynamics of nine protein variants along this trajectory, and three rationally designed variants, reveals cycles of structural destabilization and repair, evolutionary pressure to 'freeze out' unproductive motions and sampling of distinct conformations with specific catalytic properties in bi-functional intermediates. This work establishes that changes to the conformational landscapes of proteins are an essential aspect of molecular evolution and that change in function can be achieved through enrichment of preexisting conformational sub-states.</description><subject>631/535/1266</subject><subject>631/92/469</subject><subject>631/92/607</subject><subject>631/92/612</subject><subject>Biocatalysis</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Biophysics</subject><subject>Carboxylic Ester Hydrolases - chemistry</subject><subject>Carboxylic Ester Hydrolases - metabolism</subject><subject>Cell Biology</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Crystallography</subject><subject>Enzymes</subject><subject>Evolution, Molecular</subject><subject>Mutation</subject><subject>Phosphoric Triester Hydrolases - chemistry</subject><subject>Phosphoric Triester Hydrolases - metabolism</subject><subject>Protein Conformation</subject><subject>Proteomics</subject><subject>Pseudomonas - enzymology</subject><subject>Pseudomonas diminuta</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkT1PwzAQhi0EoqUwsqJILCwpdhwn9ojKp1SJpcyR45xpqsQudgIqvx5HbRFCDEx3unv03seL0DnBU4IpvzZqCW1Z22lCcnaAxoSxJE7TTBx-5wyP0In3K4xplhF-jEZJHiLhYoxuF0uInG0gsjpaO9tBbaJqY2RbKx-FvAt9eLdN39XWDJCBjwjM56aFSPdGDeVTdKRl4-FsFyfo5f5uMXuM588PT7ObeaxSJrq4IlWa5xpTkWotqyylpUyY0sA0Zjmvcq51zrTKRMmzMtGMUc0pCM2JlKJM6ARdbXXDom89-K5oa6-gaaQB2_uCcJrThKUZ-w_KKE9SMqhe_kJXtncmHDJQVFAWNg5UvKWUs9470MXa1a10m4LgYnCi2DtRDE4E_mKn2pctVN_0_vUBmG4BH1rmFdyPsX8qfgEq55TP</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Campbell, Eleanor</creator><creator>Kaltenbach, Miriam</creator><creator>Correy, Galen J</creator><creator>Carr, Paul D</creator><creator>Porebski, Benjamin T</creator><creator>Livingstone, Emma K</creator><creator>Afriat-Jurnou, Livnat</creator><creator>Buckle, Ashley M</creator><creator>Weik, Martin</creator><creator>Hollfelder, Florian</creator><creator>Tokuriki, Nobuhiko</creator><creator>Jackson, Colin J</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2943-9044</orcidid><orcidid>https://orcid.org/0000-0001-6150-3822</orcidid><orcidid>https://orcid.org/0000-0002-1367-6312</orcidid></search><sort><creationdate>20161101</creationdate><title>The role of protein dynamics in the evolution of new enzyme function</title><author>Campbell, Eleanor ; Kaltenbach, Miriam ; Correy, Galen J ; Carr, Paul D ; Porebski, Benjamin T ; Livingstone, Emma K ; Afriat-Jurnou, Livnat ; Buckle, Ashley M ; Weik, Martin ; Hollfelder, Florian ; Tokuriki, Nobuhiko ; Jackson, Colin J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-d1d477f0394ffad643ba25cfe5f0578d78ff75fc69b86b2f553f83e9f81aa9b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>631/535/1266</topic><topic>631/92/469</topic><topic>631/92/607</topic><topic>631/92/612</topic><topic>Biocatalysis</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Biophysics</topic><topic>Carboxylic Ester Hydrolases - chemistry</topic><topic>Carboxylic Ester Hydrolases - metabolism</topic><topic>Cell Biology</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Crystallography</topic><topic>Enzymes</topic><topic>Evolution, Molecular</topic><topic>Mutation</topic><topic>Phosphoric Triester Hydrolases - chemistry</topic><topic>Phosphoric Triester Hydrolases - metabolism</topic><topic>Protein Conformation</topic><topic>Proteomics</topic><topic>Pseudomonas - enzymology</topic><topic>Pseudomonas diminuta</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campbell, Eleanor</creatorcontrib><creatorcontrib>Kaltenbach, Miriam</creatorcontrib><creatorcontrib>Correy, Galen J</creatorcontrib><creatorcontrib>Carr, Paul D</creatorcontrib><creatorcontrib>Porebski, Benjamin T</creatorcontrib><creatorcontrib>Livingstone, Emma K</creatorcontrib><creatorcontrib>Afriat-Jurnou, Livnat</creatorcontrib><creatorcontrib>Buckle, Ashley M</creatorcontrib><creatorcontrib>Weik, Martin</creatorcontrib><creatorcontrib>Hollfelder, Florian</creatorcontrib><creatorcontrib>Tokuriki, Nobuhiko</creatorcontrib><creatorcontrib>Jackson, Colin J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campbell, Eleanor</au><au>Kaltenbach, Miriam</au><au>Correy, Galen J</au><au>Carr, Paul D</au><au>Porebski, Benjamin T</au><au>Livingstone, Emma K</au><au>Afriat-Jurnou, Livnat</au><au>Buckle, Ashley M</au><au>Weik, Martin</au><au>Hollfelder, Florian</au><au>Tokuriki, Nobuhiko</au><au>Jackson, Colin J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of protein dynamics in the evolution of new enzyme function</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>12</volume><issue>11</issue><spage>944</spage><epage>950</epage><pages>944-950</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>Analysis of the structures and dynamics of intermediates and engineered mutants from directed protein evolution experiments reveals how dynamic conformational changes are harnessed across evolutionary trajectories to generate new catalytic functions.
Enzymes must be ordered to allow the stabilization of transition states by their active sites, yet dynamic enough to adopt alternative conformations suited to other steps in their catalytic cycles. The biophysical principles that determine how specific protein dynamics evolve and how remote mutations affect catalytic activity are poorly understood. Here we examine a 'molecular fossil record' that was recently obtained during the laboratory evolution of a phosphotriesterase from
Pseudomonas diminuta
to an arylesterase. Analysis of the structures and dynamics of nine protein variants along this trajectory, and three rationally designed variants, reveals cycles of structural destabilization and repair, evolutionary pressure to 'freeze out' unproductive motions and sampling of distinct conformations with specific catalytic properties in bi-functional intermediates. This work establishes that changes to the conformational landscapes of proteins are an essential aspect of molecular evolution and that change in function can be achieved through enrichment of preexisting conformational sub-states.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>27618189</pmid><doi>10.1038/nchembio.2175</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2943-9044</orcidid><orcidid>https://orcid.org/0000-0001-6150-3822</orcidid><orcidid>https://orcid.org/0000-0002-1367-6312</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4450 |
ispartof | Nature chemical biology, 2016-11, Vol.12 (11), p.944-950 |
issn | 1552-4450 1552-4469 |
language | eng |
recordid | cdi_proquest_miscellaneous_1837325465 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/535/1266 631/92/469 631/92/607 631/92/612 Biocatalysis Biochemical Engineering Biochemistry Bioorganic Chemistry Biophysics Carboxylic Ester Hydrolases - chemistry Carboxylic Ester Hydrolases - metabolism Cell Biology Chemistry Chemistry/Food Science Crystallography Enzymes Evolution, Molecular Mutation Phosphoric Triester Hydrolases - chemistry Phosphoric Triester Hydrolases - metabolism Protein Conformation Proteomics Pseudomonas - enzymology Pseudomonas diminuta |
title | The role of protein dynamics in the evolution of new enzyme function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20protein%20dynamics%20in%20the%20evolution%20of%20new%20enzyme%20function&rft.jtitle=Nature%20chemical%20biology&rft.au=Campbell,%20Eleanor&rft.date=2016-11-01&rft.volume=12&rft.issue=11&rft.spage=944&rft.epage=950&rft.pages=944-950&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/nchembio.2175&rft_dat=%3Cproquest_cross%3E1837325465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1833935039&rft_id=info:pmid/27618189&rfr_iscdi=true |