Tectonic role of margin‐parallel and margin‐transverse faults during oblique subduction in the Southern Volcanic Zone of the Andes: Insights from Boundary Element Modeling

Obliquely convergent subduction margins develop trench‐parallel faults shaping the regional architecture of orogenic belts and partitioning intraplate deformation. However, transverse faults also are common along most orogenic belts and have been largely neglected in slip partitioning analysis. Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tectonics (Washington, D.C.) D.C.), 2016-09, Vol.35 (9), p.1990-2013
Hauptverfasser: Stanton‐Yonge, A., Griffith, W. A., Cembrano, J., St. Julien, R., Iturrieta, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2013
container_issue 9
container_start_page 1990
container_title Tectonics (Washington, D.C.)
container_volume 35
creator Stanton‐Yonge, A.
Griffith, W. A.
Cembrano, J.
St. Julien, R.
Iturrieta, P.
description Obliquely convergent subduction margins develop trench‐parallel faults shaping the regional architecture of orogenic belts and partitioning intraplate deformation. However, transverse faults also are common along most orogenic belts and have been largely neglected in slip partitioning analysis. Here we constrain the sense of slip and slip rates of differently oriented faults to assess whether and how transverse faults accommodate plate‐margin slip arising from oblique subduction. We implement a forward 3‐D boundary element method model of subduction at the Chilean margin evaluating the elastic response of intra‐arc faults during different stages of the Andean subduction seismic cycle (SSC). Our model results show that the margin‐parallel, NNE striking Liquiñe‐Ofqui Fault System accommodates dextral‐reverse slip during the interseismic period of the SSC, with oblique slip rates ranging between 1 and 7 mm/yr. NW striking faults exhibit sinistral‐reverse slip during the interseismic phase of the SSC, displaying a maximum oblique slip of 1.4 mm/yr. ENE striking faults display dextral strike slip, with a slip rate of 0.85 mm/yr. During the SSC coseismic phase, all modeled faults switch their kinematics: NE striking fault become sinistral, whereas NW striking faults are normal dextral. Because coseismic tensile stress changes on NW faults reach 0.6 MPa at 10–15 km depth, it is likely that they can serve as transient magma pathways during this phase of the SSC. Our model challenges the existing paradigm wherein only margin‐parallel faults account for slip partitioning: transverse faults are also capable of accommodating a significant amount of plate‐boundary slip arising from oblique convergence. Key Points Transverse‐to‐the‐orogen faults may also participate in slip partitioning resulting from oblique subduction We implement a forward 3‐D model of Andean subduction to simulate interseismic and coseismic deformation We constrain kinematics, slip rate, and seismic hazard associated with differently oriented regional faults
doi_str_mv 10.1002/2016TC004226
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837325209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1837325209</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3649-465edf0e56db0f36080cad7d8e396c2bf3ebba8b69980d5e39efa013df665baa3</originalsourceid><addsrcrecordid>eNpdkcFu1DAQhi0EEkvLjQewxIVL2okdOwm3slpKpaIeCBy4RE483rry2osdU-2NR-BNeCeeBC9FAnGZkWY-zT8zPyEvajirAdg5g1oOa4CGMfmIrOq-aaq-xMdkBaztqraB9il5ltIdQN0IKVfkx4DzErydaQwOaTB0p-LW-p_fvu9VVM6ho8rrv9UlKp--YkxIjcpuSVTnaP2WhsnZLxlpypPO82KDp9bT5Rbph5BLip5-Cm5WR63Pwf_WOnYvvMb0ml75ZLe3ZZyJYUffhOy1ige6cbhDv9D3QaMrMqfkiVEu4fM_-YR8fLsZ1u-q65vLq_XFdaW4bPqqkQK1ARRST2C4hA5mpVvdIe_lzCbDcZpUN8m-70CLUkWjoObaSCkmpfgJefUwdx9DuSot486mGZ1THkNOY93xljPBoC_oy__Qu5CjL9sVivVCCsG6QvEH6t46PIz7aMtLD2MN49G68V_rxmGzHhg0oue_AABKk4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1829565528</pqid></control><display><type>article</type><title>Tectonic role of margin‐parallel and margin‐transverse faults during oblique subduction in the Southern Volcanic Zone of the Andes: Insights from Boundary Element Modeling</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Stanton‐Yonge, A. ; Griffith, W. A. ; Cembrano, J. ; St. Julien, R. ; Iturrieta, P.</creator><creatorcontrib>Stanton‐Yonge, A. ; Griffith, W. A. ; Cembrano, J. ; St. Julien, R. ; Iturrieta, P.</creatorcontrib><description>Obliquely convergent subduction margins develop trench‐parallel faults shaping the regional architecture of orogenic belts and partitioning intraplate deformation. However, transverse faults also are common along most orogenic belts and have been largely neglected in slip partitioning analysis. Here we constrain the sense of slip and slip rates of differently oriented faults to assess whether and how transverse faults accommodate plate‐margin slip arising from oblique subduction. We implement a forward 3‐D boundary element method model of subduction at the Chilean margin evaluating the elastic response of intra‐arc faults during different stages of the Andean subduction seismic cycle (SSC). Our model results show that the margin‐parallel, NNE striking Liquiñe‐Ofqui Fault System accommodates dextral‐reverse slip during the interseismic period of the SSC, with oblique slip rates ranging between 1 and 7 mm/yr. NW striking faults exhibit sinistral‐reverse slip during the interseismic phase of the SSC, displaying a maximum oblique slip of 1.4 mm/yr. ENE striking faults display dextral strike slip, with a slip rate of 0.85 mm/yr. During the SSC coseismic phase, all modeled faults switch their kinematics: NE striking fault become sinistral, whereas NW striking faults are normal dextral. Because coseismic tensile stress changes on NW faults reach 0.6 MPa at 10–15 km depth, it is likely that they can serve as transient magma pathways during this phase of the SSC. Our model challenges the existing paradigm wherein only margin‐parallel faults account for slip partitioning: transverse faults are also capable of accommodating a significant amount of plate‐boundary slip arising from oblique convergence. Key Points Transverse‐to‐the‐orogen faults may also participate in slip partitioning resulting from oblique subduction We implement a forward 3‐D model of Andean subduction to simulate interseismic and coseismic deformation We constrain kinematics, slip rate, and seismic hazard associated with differently oriented regional faults</description><identifier>ISSN: 0278-7407</identifier><identifier>EISSN: 1944-9194</identifier><identifier>DOI: 10.1002/2016TC004226</identifier><identifier>CODEN: TCTNDM</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Boundary Element Modeling ; Deformation ; Fault lines ; Kinematics ; Liquiñe‐Ofqui Fault System ; margin‐transverse faults ; Plate tectonics ; Seismic hazard ; Seismology ; slip partitioning ; Southern Andes ; Tensile stress</subject><ispartof>Tectonics (Washington, D.C.), 2016-09, Vol.35 (9), p.1990-2013</ispartof><rights>2016. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3649-465edf0e56db0f36080cad7d8e396c2bf3ebba8b69980d5e39efa013df665baa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016TC004226$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016TC004226$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,1430,11497,27907,27908,45557,45558,46392,46451,46816,46875</link.rule.ids></links><search><creatorcontrib>Stanton‐Yonge, A.</creatorcontrib><creatorcontrib>Griffith, W. A.</creatorcontrib><creatorcontrib>Cembrano, J.</creatorcontrib><creatorcontrib>St. Julien, R.</creatorcontrib><creatorcontrib>Iturrieta, P.</creatorcontrib><title>Tectonic role of margin‐parallel and margin‐transverse faults during oblique subduction in the Southern Volcanic Zone of the Andes: Insights from Boundary Element Modeling</title><title>Tectonics (Washington, D.C.)</title><description>Obliquely convergent subduction margins develop trench‐parallel faults shaping the regional architecture of orogenic belts and partitioning intraplate deformation. However, transverse faults also are common along most orogenic belts and have been largely neglected in slip partitioning analysis. Here we constrain the sense of slip and slip rates of differently oriented faults to assess whether and how transverse faults accommodate plate‐margin slip arising from oblique subduction. We implement a forward 3‐D boundary element method model of subduction at the Chilean margin evaluating the elastic response of intra‐arc faults during different stages of the Andean subduction seismic cycle (SSC). Our model results show that the margin‐parallel, NNE striking Liquiñe‐Ofqui Fault System accommodates dextral‐reverse slip during the interseismic period of the SSC, with oblique slip rates ranging between 1 and 7 mm/yr. NW striking faults exhibit sinistral‐reverse slip during the interseismic phase of the SSC, displaying a maximum oblique slip of 1.4 mm/yr. ENE striking faults display dextral strike slip, with a slip rate of 0.85 mm/yr. During the SSC coseismic phase, all modeled faults switch their kinematics: NE striking fault become sinistral, whereas NW striking faults are normal dextral. Because coseismic tensile stress changes on NW faults reach 0.6 MPa at 10–15 km depth, it is likely that they can serve as transient magma pathways during this phase of the SSC. Our model challenges the existing paradigm wherein only margin‐parallel faults account for slip partitioning: transverse faults are also capable of accommodating a significant amount of plate‐boundary slip arising from oblique convergence. Key Points Transverse‐to‐the‐orogen faults may also participate in slip partitioning resulting from oblique subduction We implement a forward 3‐D model of Andean subduction to simulate interseismic and coseismic deformation We constrain kinematics, slip rate, and seismic hazard associated with differently oriented regional faults</description><subject>Boundary Element Modeling</subject><subject>Deformation</subject><subject>Fault lines</subject><subject>Kinematics</subject><subject>Liquiñe‐Ofqui Fault System</subject><subject>margin‐transverse faults</subject><subject>Plate tectonics</subject><subject>Seismic hazard</subject><subject>Seismology</subject><subject>slip partitioning</subject><subject>Southern Andes</subject><subject>Tensile stress</subject><issn>0278-7407</issn><issn>1944-9194</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkcFu1DAQhi0EEkvLjQewxIVL2okdOwm3slpKpaIeCBy4RE483rry2osdU-2NR-BNeCeeBC9FAnGZkWY-zT8zPyEvajirAdg5g1oOa4CGMfmIrOq-aaq-xMdkBaztqraB9il5ltIdQN0IKVfkx4DzErydaQwOaTB0p-LW-p_fvu9VVM6ho8rrv9UlKp--YkxIjcpuSVTnaP2WhsnZLxlpypPO82KDp9bT5Rbph5BLip5-Cm5WR63Pwf_WOnYvvMb0ml75ZLe3ZZyJYUffhOy1ige6cbhDv9D3QaMrMqfkiVEu4fM_-YR8fLsZ1u-q65vLq_XFdaW4bPqqkQK1ARRST2C4hA5mpVvdIe_lzCbDcZpUN8m-70CLUkWjoObaSCkmpfgJefUwdx9DuSot486mGZ1THkNOY93xljPBoC_oy__Qu5CjL9sVivVCCsG6QvEH6t46PIz7aMtLD2MN49G68V_rxmGzHhg0oue_AABKk4w</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Stanton‐Yonge, A.</creator><creator>Griffith, W. A.</creator><creator>Cembrano, J.</creator><creator>St. Julien, R.</creator><creator>Iturrieta, P.</creator><general>Blackwell Publishing Ltd</general><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>201609</creationdate><title>Tectonic role of margin‐parallel and margin‐transverse faults during oblique subduction in the Southern Volcanic Zone of the Andes: Insights from Boundary Element Modeling</title><author>Stanton‐Yonge, A. ; Griffith, W. A. ; Cembrano, J. ; St. Julien, R. ; Iturrieta, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3649-465edf0e56db0f36080cad7d8e396c2bf3ebba8b69980d5e39efa013df665baa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Boundary Element Modeling</topic><topic>Deformation</topic><topic>Fault lines</topic><topic>Kinematics</topic><topic>Liquiñe‐Ofqui Fault System</topic><topic>margin‐transverse faults</topic><topic>Plate tectonics</topic><topic>Seismic hazard</topic><topic>Seismology</topic><topic>slip partitioning</topic><topic>Southern Andes</topic><topic>Tensile stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stanton‐Yonge, A.</creatorcontrib><creatorcontrib>Griffith, W. A.</creatorcontrib><creatorcontrib>Cembrano, J.</creatorcontrib><creatorcontrib>St. Julien, R.</creatorcontrib><creatorcontrib>Iturrieta, P.</creatorcontrib><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Tectonics (Washington, D.C.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stanton‐Yonge, A.</au><au>Griffith, W. A.</au><au>Cembrano, J.</au><au>St. Julien, R.</au><au>Iturrieta, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tectonic role of margin‐parallel and margin‐transverse faults during oblique subduction in the Southern Volcanic Zone of the Andes: Insights from Boundary Element Modeling</atitle><jtitle>Tectonics (Washington, D.C.)</jtitle><date>2016-09</date><risdate>2016</risdate><volume>35</volume><issue>9</issue><spage>1990</spage><epage>2013</epage><pages>1990-2013</pages><issn>0278-7407</issn><eissn>1944-9194</eissn><coden>TCTNDM</coden><abstract>Obliquely convergent subduction margins develop trench‐parallel faults shaping the regional architecture of orogenic belts and partitioning intraplate deformation. However, transverse faults also are common along most orogenic belts and have been largely neglected in slip partitioning analysis. Here we constrain the sense of slip and slip rates of differently oriented faults to assess whether and how transverse faults accommodate plate‐margin slip arising from oblique subduction. We implement a forward 3‐D boundary element method model of subduction at the Chilean margin evaluating the elastic response of intra‐arc faults during different stages of the Andean subduction seismic cycle (SSC). Our model results show that the margin‐parallel, NNE striking Liquiñe‐Ofqui Fault System accommodates dextral‐reverse slip during the interseismic period of the SSC, with oblique slip rates ranging between 1 and 7 mm/yr. NW striking faults exhibit sinistral‐reverse slip during the interseismic phase of the SSC, displaying a maximum oblique slip of 1.4 mm/yr. ENE striking faults display dextral strike slip, with a slip rate of 0.85 mm/yr. During the SSC coseismic phase, all modeled faults switch their kinematics: NE striking fault become sinistral, whereas NW striking faults are normal dextral. Because coseismic tensile stress changes on NW faults reach 0.6 MPa at 10–15 km depth, it is likely that they can serve as transient magma pathways during this phase of the SSC. Our model challenges the existing paradigm wherein only margin‐parallel faults account for slip partitioning: transverse faults are also capable of accommodating a significant amount of plate‐boundary slip arising from oblique convergence. Key Points Transverse‐to‐the‐orogen faults may also participate in slip partitioning resulting from oblique subduction We implement a forward 3‐D model of Andean subduction to simulate interseismic and coseismic deformation We constrain kinematics, slip rate, and seismic hazard associated with differently oriented regional faults</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2016TC004226</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-7407
ispartof Tectonics (Washington, D.C.), 2016-09, Vol.35 (9), p.1990-2013
issn 0278-7407
1944-9194
language eng
recordid cdi_proquest_miscellaneous_1837325209
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals
subjects Boundary Element Modeling
Deformation
Fault lines
Kinematics
Liquiñe‐Ofqui Fault System
margin‐transverse faults
Plate tectonics
Seismic hazard
Seismology
slip partitioning
Southern Andes
Tensile stress
title Tectonic role of margin‐parallel and margin‐transverse faults during oblique subduction in the Southern Volcanic Zone of the Andes: Insights from Boundary Element Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A01%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tectonic%20role%20of%20margin%E2%80%90parallel%20and%20margin%E2%80%90transverse%20faults%20during%20oblique%20subduction%20in%20the%20Southern%20Volcanic%20Zone%20of%20the%20Andes:%20Insights%20from%20Boundary%20Element%20Modeling&rft.jtitle=Tectonics%20(Washington,%20D.C.)&rft.au=Stanton%E2%80%90Yonge,%20A.&rft.date=2016-09&rft.volume=35&rft.issue=9&rft.spage=1990&rft.epage=2013&rft.pages=1990-2013&rft.issn=0278-7407&rft.eissn=1944-9194&rft.coden=TCTNDM&rft_id=info:doi/10.1002/2016TC004226&rft_dat=%3Cproquest_wiley%3E1837325209%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1829565528&rft_id=info:pmid/&rfr_iscdi=true