Programmatic utility of tuberculosis cluster investigation using a social network approach in Birmingham, United Kingdom

SETTING: Birmingham, United Kingdom, 2010-2014.OBJECTIVE: To investigate predictors for clustering of tuberculosis (TB) cases and cluster size and to evaluate the impact of cluster investigation using social network data.DESIGN: Retrospective observational cohort study. Prioritised cases linked usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The international journal of tuberculosis and lung disease 2016-10, Vol.20 (10), p.1300-1305
Hauptverfasser: Munang, M. L., Browne, C., Evans, J. T., Smith, E. G., Hawkey, P. M., Welch, S. B, Kaur, H., Dedicoat, M. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1305
container_issue 10
container_start_page 1300
container_title The international journal of tuberculosis and lung disease
container_volume 20
creator Munang, M. L.
Browne, C.
Evans, J. T.
Smith, E. G.
Hawkey, P. M.
Welch, S. B
Kaur, H.
Dedicoat, M. J.
description SETTING: Birmingham, United Kingdom, 2010-2014.OBJECTIVE: To investigate predictors for clustering of tuberculosis (TB) cases and cluster size and to evaluate the impact of cluster investigation using social network data.DESIGN: Retrospective observational cohort study. Prioritised cases linked using 24-locus mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) were interviewed using a social network approach to find epidemiological links.RESULTS: Of 2055 TB cases notified, 56% could be typed. Clustering was associated with younger age, UK birth, Black Caribbean ethnicity, social risk factors, pulmonary TB and negative human immunodeficiency virus status. Only UK birth and presence of more than one social risk factor were associated with larger cluster size, while drug resistance was associated with smaller cluster size. Social network data from 139/431 clustered cases found new epidemiological links in 11/19 clusters with 5 members (undirected median network density 0.09, interquartile range 0.05-0.4). Ninety-eight additional contacts were assessed, with one case of active TB and 24 with latent tuberculous infection diagnosed.CONCLUSION: A social network approach increased knowledge of likely transmission events, but few additional TB cases were diagnosed. Obtaining social network data for all typed and untyped TB cases may improve contact tracing and reduce unexpected transmission detected from molecular data.
doi_str_mv 10.5588/ijtld.16.0161
format Article
fullrecord <record><control><sourceid>pubtec_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837322171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ingid>iuatld/ijtld/2016/00000020/00000010/art00009</ingid><sourcerecordid>iuatld/ijtld/2016/00000020/00000010/art00009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-8b0b8f1b4f648d3f0c426e37c9ba961e11cde812b4bdc929ebf19fb6d099e8683</originalsourceid><addsrcrecordid>eNqNkktv1DAURi0EoqWwZIu8ZEEGXyfxYwnlKSoBEl1btuNMPSTx4Eeh_HqczpQdEt74Wjo-vvJ3EXoKZNP3Qrz0uzwNG2AbAgzuoVMQ0DdcUnK_1oTypuUgT9CjlHaEUADgD9EJ5Zz2pBWn6NeXGLZRz7PO3uKS_eTzDQ4jzsW4aMsUkk_YTiVlF7Ffrl3KflvhsOCS_LLFGqdgvZ7w4vLPEL9jvd_HoO1VpfFrH-cKXen5Bb5cfHYD_lTPQ5gfowejnpJ7ctzP0OW7t9_OPzQXn99_PH910diOQW6EIUaMYLqRdWJoR2I7ylzLrTRaMnAAdnACqOnMYCWVzowgR8MGIqUTTLRn6PnBW5v6UWr3avbJumnSiwslKRAtbykFDv-D9i3vuFjR5oDaGFKKblT76GcdbxQQteaibnNRwNSaS-WfHdXFzG74S98FUYE3B6D-jluyVrtQ4lI_RvmiV9PBR8lqvF2UHIv6oo55rWTVfP2Xxt6Z1qlYh0JdU7LUy7SOBRG0V1A7UYMbdZmyyjqq7W-VZPsHajO9Yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835374781</pqid></control><display><type>article</type><title>Programmatic utility of tuberculosis cluster investigation using a social network approach in Birmingham, United Kingdom</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Munang, M. L. ; Browne, C. ; Evans, J. T. ; Smith, E. G. ; Hawkey, P. M. ; Welch, S. B ; Kaur, H. ; Dedicoat, M. J.</creator><creatorcontrib>Munang, M. L. ; Browne, C. ; Evans, J. T. ; Smith, E. G. ; Hawkey, P. M. ; Welch, S. B ; Kaur, H. ; Dedicoat, M. J.</creatorcontrib><description>SETTING: Birmingham, United Kingdom, 2010-2014.OBJECTIVE: To investigate predictors for clustering of tuberculosis (TB) cases and cluster size and to evaluate the impact of cluster investigation using social network data.DESIGN: Retrospective observational cohort study. Prioritised cases linked using 24-locus mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) were interviewed using a social network approach to find epidemiological links.RESULTS: Of 2055 TB cases notified, 56% could be typed. Clustering was associated with younger age, UK birth, Black Caribbean ethnicity, social risk factors, pulmonary TB and negative human immunodeficiency virus status. Only UK birth and presence of more than one social risk factor were associated with larger cluster size, while drug resistance was associated with smaller cluster size. Social network data from 139/431 clustered cases found new epidemiological links in 11/19 clusters with 5 members (undirected median network density 0.09, interquartile range 0.05-0.4). Ninety-eight additional contacts were assessed, with one case of active TB and 24 with latent tuberculous infection diagnosed.CONCLUSION: A social network approach increased knowledge of likely transmission events, but few additional TB cases were diagnosed. Obtaining social network data for all typed and untyped TB cases may improve contact tracing and reduce unexpected transmission detected from molecular data.</description><identifier>ISSN: 1027-3719</identifier><identifier>EISSN: 1815-7920</identifier><identifier>DOI: 10.5588/ijtld.16.0161</identifier><identifier>PMID: 27725038</identifier><language>eng</language><publisher>France: International Union Against Tuberculosis and Lung Disease</publisher><subject>Adult ; Bacterial Typing Techniques ; Cluster Analysis ; Contact Tracing ; Female ; Humans ; Latent Tuberculosis - diagnosis ; Latent Tuberculosis - epidemiology ; Male ; Middle Aged ; Molecular Epidemiology ; Mycobacterium tuberculosis - classification ; Mycobacterium tuberculosis - isolation &amp; purification ; Retrospective Studies ; Risk Factors ; Social Environment ; Social Network ; Tuberculosis ; Tuberculosis - diagnosis ; Tuberculosis - epidemiology ; Tuberculosis, Pulmonary - diagnosis ; Tuberculosis, Pulmonary - epidemiology ; United Kingdom - epidemiology</subject><ispartof>The international journal of tuberculosis and lung disease, 2016-10, Vol.20 (10), p.1300-1305</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-8b0b8f1b4f648d3f0c426e37c9ba961e11cde812b4bdc929ebf19fb6d099e8683</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27725038$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Munang, M. L.</creatorcontrib><creatorcontrib>Browne, C.</creatorcontrib><creatorcontrib>Evans, J. T.</creatorcontrib><creatorcontrib>Smith, E. G.</creatorcontrib><creatorcontrib>Hawkey, P. M.</creatorcontrib><creatorcontrib>Welch, S. B</creatorcontrib><creatorcontrib>Kaur, H.</creatorcontrib><creatorcontrib>Dedicoat, M. J.</creatorcontrib><title>Programmatic utility of tuberculosis cluster investigation using a social network approach in Birmingham, United Kingdom</title><title>The international journal of tuberculosis and lung disease</title><addtitle>Int J Tuberc Lung Dis</addtitle><description>SETTING: Birmingham, United Kingdom, 2010-2014.OBJECTIVE: To investigate predictors for clustering of tuberculosis (TB) cases and cluster size and to evaluate the impact of cluster investigation using social network data.DESIGN: Retrospective observational cohort study. Prioritised cases linked using 24-locus mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) were interviewed using a social network approach to find epidemiological links.RESULTS: Of 2055 TB cases notified, 56% could be typed. Clustering was associated with younger age, UK birth, Black Caribbean ethnicity, social risk factors, pulmonary TB and negative human immunodeficiency virus status. Only UK birth and presence of more than one social risk factor were associated with larger cluster size, while drug resistance was associated with smaller cluster size. Social network data from 139/431 clustered cases found new epidemiological links in 11/19 clusters with 5 members (undirected median network density 0.09, interquartile range 0.05-0.4). Ninety-eight additional contacts were assessed, with one case of active TB and 24 with latent tuberculous infection diagnosed.CONCLUSION: A social network approach increased knowledge of likely transmission events, but few additional TB cases were diagnosed. Obtaining social network data for all typed and untyped TB cases may improve contact tracing and reduce unexpected transmission detected from molecular data.</description><subject>Adult</subject><subject>Bacterial Typing Techniques</subject><subject>Cluster Analysis</subject><subject>Contact Tracing</subject><subject>Female</subject><subject>Humans</subject><subject>Latent Tuberculosis - diagnosis</subject><subject>Latent Tuberculosis - epidemiology</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Molecular Epidemiology</subject><subject>Mycobacterium tuberculosis - classification</subject><subject>Mycobacterium tuberculosis - isolation &amp; purification</subject><subject>Retrospective Studies</subject><subject>Risk Factors</subject><subject>Social Environment</subject><subject>Social Network</subject><subject>Tuberculosis</subject><subject>Tuberculosis - diagnosis</subject><subject>Tuberculosis - epidemiology</subject><subject>Tuberculosis, Pulmonary - diagnosis</subject><subject>Tuberculosis, Pulmonary - epidemiology</subject><subject>United Kingdom - epidemiology</subject><issn>1027-3719</issn><issn>1815-7920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkktv1DAURi0EoqWwZIu8ZEEGXyfxYwnlKSoBEl1btuNMPSTx4Eeh_HqczpQdEt74Wjo-vvJ3EXoKZNP3Qrz0uzwNG2AbAgzuoVMQ0DdcUnK_1oTypuUgT9CjlHaEUADgD9EJ5Zz2pBWn6NeXGLZRz7PO3uKS_eTzDQ4jzsW4aMsUkk_YTiVlF7Ffrl3KflvhsOCS_LLFGqdgvZ7w4vLPEL9jvd_HoO1VpfFrH-cKXen5Bb5cfHYD_lTPQ5gfowejnpJ7ctzP0OW7t9_OPzQXn99_PH910diOQW6EIUaMYLqRdWJoR2I7ylzLrTRaMnAAdnACqOnMYCWVzowgR8MGIqUTTLRn6PnBW5v6UWr3avbJumnSiwslKRAtbykFDv-D9i3vuFjR5oDaGFKKblT76GcdbxQQteaibnNRwNSaS-WfHdXFzG74S98FUYE3B6D-jluyVrtQ4lI_RvmiV9PBR8lqvF2UHIv6oo55rWTVfP2Xxt6Z1qlYh0JdU7LUy7SOBRG0V1A7UYMbdZmyyjqq7W-VZPsHajO9Yg</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Munang, M. L.</creator><creator>Browne, C.</creator><creator>Evans, J. T.</creator><creator>Smith, E. G.</creator><creator>Hawkey, P. M.</creator><creator>Welch, S. B</creator><creator>Kaur, H.</creator><creator>Dedicoat, M. J.</creator><general>International Union Against Tuberculosis and Lung Disease</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>C1K</scope></search><sort><creationdate>20161001</creationdate><title>Programmatic utility of tuberculosis cluster investigation using a social network approach in Birmingham, United Kingdom</title><author>Munang, M. L. ; Browne, C. ; Evans, J. T. ; Smith, E. G. ; Hawkey, P. M. ; Welch, S. B ; Kaur, H. ; Dedicoat, M. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-8b0b8f1b4f648d3f0c426e37c9ba961e11cde812b4bdc929ebf19fb6d099e8683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>Bacterial Typing Techniques</topic><topic>Cluster Analysis</topic><topic>Contact Tracing</topic><topic>Female</topic><topic>Humans</topic><topic>Latent Tuberculosis - diagnosis</topic><topic>Latent Tuberculosis - epidemiology</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Molecular Epidemiology</topic><topic>Mycobacterium tuberculosis - classification</topic><topic>Mycobacterium tuberculosis - isolation &amp; purification</topic><topic>Retrospective Studies</topic><topic>Risk Factors</topic><topic>Social Environment</topic><topic>Social Network</topic><topic>Tuberculosis</topic><topic>Tuberculosis - diagnosis</topic><topic>Tuberculosis - epidemiology</topic><topic>Tuberculosis, Pulmonary - diagnosis</topic><topic>Tuberculosis, Pulmonary - epidemiology</topic><topic>United Kingdom - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munang, M. L.</creatorcontrib><creatorcontrib>Browne, C.</creatorcontrib><creatorcontrib>Evans, J. T.</creatorcontrib><creatorcontrib>Smith, E. G.</creatorcontrib><creatorcontrib>Hawkey, P. M.</creatorcontrib><creatorcontrib>Welch, S. B</creatorcontrib><creatorcontrib>Kaur, H.</creatorcontrib><creatorcontrib>Dedicoat, M. J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>The international journal of tuberculosis and lung disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Munang, M. L.</au><au>Browne, C.</au><au>Evans, J. T.</au><au>Smith, E. G.</au><au>Hawkey, P. M.</au><au>Welch, S. B</au><au>Kaur, H.</au><au>Dedicoat, M. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Programmatic utility of tuberculosis cluster investigation using a social network approach in Birmingham, United Kingdom</atitle><jtitle>The international journal of tuberculosis and lung disease</jtitle><addtitle>Int J Tuberc Lung Dis</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>20</volume><issue>10</issue><spage>1300</spage><epage>1305</epage><pages>1300-1305</pages><issn>1027-3719</issn><eissn>1815-7920</eissn><abstract>SETTING: Birmingham, United Kingdom, 2010-2014.OBJECTIVE: To investigate predictors for clustering of tuberculosis (TB) cases and cluster size and to evaluate the impact of cluster investigation using social network data.DESIGN: Retrospective observational cohort study. Prioritised cases linked using 24-locus mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) were interviewed using a social network approach to find epidemiological links.RESULTS: Of 2055 TB cases notified, 56% could be typed. Clustering was associated with younger age, UK birth, Black Caribbean ethnicity, social risk factors, pulmonary TB and negative human immunodeficiency virus status. Only UK birth and presence of more than one social risk factor were associated with larger cluster size, while drug resistance was associated with smaller cluster size. Social network data from 139/431 clustered cases found new epidemiological links in 11/19 clusters with 5 members (undirected median network density 0.09, interquartile range 0.05-0.4). Ninety-eight additional contacts were assessed, with one case of active TB and 24 with latent tuberculous infection diagnosed.CONCLUSION: A social network approach increased knowledge of likely transmission events, but few additional TB cases were diagnosed. Obtaining social network data for all typed and untyped TB cases may improve contact tracing and reduce unexpected transmission detected from molecular data.</abstract><cop>France</cop><pub>International Union Against Tuberculosis and Lung Disease</pub><pmid>27725038</pmid><doi>10.5588/ijtld.16.0161</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1027-3719
ispartof The international journal of tuberculosis and lung disease, 2016-10, Vol.20 (10), p.1300-1305
issn 1027-3719
1815-7920
language eng
recordid cdi_proquest_miscellaneous_1837322171
source MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects Adult
Bacterial Typing Techniques
Cluster Analysis
Contact Tracing
Female
Humans
Latent Tuberculosis - diagnosis
Latent Tuberculosis - epidemiology
Male
Middle Aged
Molecular Epidemiology
Mycobacterium tuberculosis - classification
Mycobacterium tuberculosis - isolation & purification
Retrospective Studies
Risk Factors
Social Environment
Social Network
Tuberculosis
Tuberculosis - diagnosis
Tuberculosis - epidemiology
Tuberculosis, Pulmonary - diagnosis
Tuberculosis, Pulmonary - epidemiology
United Kingdom - epidemiology
title Programmatic utility of tuberculosis cluster investigation using a social network approach in Birmingham, United Kingdom
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A23%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubtec_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Programmatic%20utility%20of%20tuberculosis%20cluster%20investigation%20using%20a%20social%20network%20approach%20in%20Birmingham,%20United%20Kingdom&rft.jtitle=The%20international%20journal%20of%20tuberculosis%20and%20lung%20disease&rft.au=Munang,%20M.%20L.&rft.date=2016-10-01&rft.volume=20&rft.issue=10&rft.spage=1300&rft.epage=1305&rft.pages=1300-1305&rft.issn=1027-3719&rft.eissn=1815-7920&rft_id=info:doi/10.5588/ijtld.16.0161&rft_dat=%3Cpubtec_proqu%3Eiuatld/ijtld/2016/00000020/00000010/art00009%3C/pubtec_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835374781&rft_id=info:pmid/27725038&rft_ingid=iuatld/ijtld/2016/00000020/00000010/art00009&rfr_iscdi=true