An artificial neural network for predicting corrosion rate and hardness of magnesium alloys
There presently exists a demand for development of magnesium (Mg) alloys for wrought applications. In this study, alloying additions of Zn, Ca, Zr, Gd and Sr to Mg were made in binary, ternary and quaternary combinations up to a maximum total alloy loading ~3wt.%, and thus termed dilute. Such dilute...
Gespeichert in:
Veröffentlicht in: | Materials & design 2016, Vol.90, p.1034-1043 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1043 |
---|---|
container_issue | |
container_start_page | 1034 |
container_title | Materials & design |
container_volume | 90 |
creator | Xia, X. Nie, J.F. Davies, C.H.J. Tang, W.N. Xu, S.W. Birbilis, N. |
description | There presently exists a demand for development of magnesium (Mg) alloys for wrought applications. In this study, alloying additions of Zn, Ca, Zr, Gd and Sr to Mg were made in binary, ternary and quaternary combinations up to a maximum total alloy loading ~3wt.%, and thus termed dilute. Such dilute alloys were studied for the purposes of potential sheet applications. The corrosion of a total of 53 custom alloys was studied in conjunction with microhardness. The results reveal that hardness increased with total alloy loading, whilst the corrosion rates did not show any clear relationship with alloy loading. Corrosion of the tested alloys was instead very sensitive to both the type and amount of the unique alloying addition. This indicates that the optimisation of properties requires a detailed knowledge of the electrochemical influence of unique alloying additions. The work contributes to an understanding of compositional effects on the corrosion of Mg, and can be exploited in prediction of corrosion resistance of existing and future Mg alloys.
[Display omitted]
•Emerging Mg alloys for automotive sheet applications explored.•Mg alloys designed to optimise hardness with minimal increase in corrosion rate.•Artificial neural network (ANN) model constructed to manage complex data set.•ANN model accurately predicted alloy hardness and corrosion rate. |
doi_str_mv | 10.1016/j.matdes.2015.11.040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837319692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0264127515307826</els_id><sourcerecordid>1786191653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-61169ebdb77899084f04e4ee893344334e6239e9956035dc015bb16b9e5a15803</originalsourceid><addsrcrecordid>eNqFkL1OxDAQhC0EEsfBG1C4pEnwxo4dN0gI8Sch0UBFYTnOBnwk8WHnQLw9hqOGYjVbzIw0HyHHwEpgIE9X5WjnDlNZMahLgJIJtkMW0CheCNBqlyxYJUUBlar3yUFKK8aqSnGxIE_nE7Vx9r133g50wk38kfkjxFfah0jXETvvZj89UxdiDMmHiUY7I7VTR19s7CZMiYaejvY5v34zUjsM4TMdkr3eDgmPfnVJHq8uHy5uirv769uL87vCcVXNhQSQGtuuVarRmjWiZwIFYqM5FyIfyopr1LqWjNedyxvbFmSrsbZQN4wvycm2dx3D2wbTbEafHA6DnTBskoGGKw5a6up_q2okaJA1z1axtbq8OUXszTr60cZPA8x8Yzcrs8VuvrEbAJOx59jZNoZ58bvHaJLzOLkMMaKbTRf83wVfK_KMyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786191653</pqid></control><display><type>article</type><title>An artificial neural network for predicting corrosion rate and hardness of magnesium alloys</title><source>Alma/SFX Local Collection</source><creator>Xia, X. ; Nie, J.F. ; Davies, C.H.J. ; Tang, W.N. ; Xu, S.W. ; Birbilis, N.</creator><creatorcontrib>Xia, X. ; Nie, J.F. ; Davies, C.H.J. ; Tang, W.N. ; Xu, S.W. ; Birbilis, N.</creatorcontrib><description>There presently exists a demand for development of magnesium (Mg) alloys for wrought applications. In this study, alloying additions of Zn, Ca, Zr, Gd and Sr to Mg were made in binary, ternary and quaternary combinations up to a maximum total alloy loading ~3wt.%, and thus termed dilute. Such dilute alloys were studied for the purposes of potential sheet applications. The corrosion of a total of 53 custom alloys was studied in conjunction with microhardness. The results reveal that hardness increased with total alloy loading, whilst the corrosion rates did not show any clear relationship with alloy loading. Corrosion of the tested alloys was instead very sensitive to both the type and amount of the unique alloying addition. This indicates that the optimisation of properties requires a detailed knowledge of the electrochemical influence of unique alloying additions. The work contributes to an understanding of compositional effects on the corrosion of Mg, and can be exploited in prediction of corrosion resistance of existing and future Mg alloys.
[Display omitted]
•Emerging Mg alloys for automotive sheet applications explored.•Mg alloys designed to optimise hardness with minimal increase in corrosion rate.•Artificial neural network (ANN) model constructed to manage complex data set.•ANN model accurately predicted alloy hardness and corrosion rate.</description><identifier>ISSN: 0264-1275</identifier><identifier>EISSN: 1873-4197</identifier><identifier>DOI: 10.1016/j.matdes.2015.11.040</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Alloying ; Alloying additive ; Alloys ; Corrosion ; Dilution ; Hardness ; Magnesium ; Magnesium base alloys ; Mg alloys ; Neural network</subject><ispartof>Materials & design, 2016, Vol.90, p.1034-1043</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-61169ebdb77899084f04e4ee893344334e6239e9956035dc015bb16b9e5a15803</citedby><cites>FETCH-LOGICAL-c372t-61169ebdb77899084f04e4ee893344334e6239e9956035dc015bb16b9e5a15803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Xia, X.</creatorcontrib><creatorcontrib>Nie, J.F.</creatorcontrib><creatorcontrib>Davies, C.H.J.</creatorcontrib><creatorcontrib>Tang, W.N.</creatorcontrib><creatorcontrib>Xu, S.W.</creatorcontrib><creatorcontrib>Birbilis, N.</creatorcontrib><title>An artificial neural network for predicting corrosion rate and hardness of magnesium alloys</title><title>Materials & design</title><description>There presently exists a demand for development of magnesium (Mg) alloys for wrought applications. In this study, alloying additions of Zn, Ca, Zr, Gd and Sr to Mg were made in binary, ternary and quaternary combinations up to a maximum total alloy loading ~3wt.%, and thus termed dilute. Such dilute alloys were studied for the purposes of potential sheet applications. The corrosion of a total of 53 custom alloys was studied in conjunction with microhardness. The results reveal that hardness increased with total alloy loading, whilst the corrosion rates did not show any clear relationship with alloy loading. Corrosion of the tested alloys was instead very sensitive to both the type and amount of the unique alloying addition. This indicates that the optimisation of properties requires a detailed knowledge of the electrochemical influence of unique alloying additions. The work contributes to an understanding of compositional effects on the corrosion of Mg, and can be exploited in prediction of corrosion resistance of existing and future Mg alloys.
[Display omitted]
•Emerging Mg alloys for automotive sheet applications explored.•Mg alloys designed to optimise hardness with minimal increase in corrosion rate.•Artificial neural network (ANN) model constructed to manage complex data set.•ANN model accurately predicted alloy hardness and corrosion rate.</description><subject>Alloying</subject><subject>Alloying additive</subject><subject>Alloys</subject><subject>Corrosion</subject><subject>Dilution</subject><subject>Hardness</subject><subject>Magnesium</subject><subject>Magnesium base alloys</subject><subject>Mg alloys</subject><subject>Neural network</subject><issn>0264-1275</issn><issn>1873-4197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OxDAQhC0EEsfBG1C4pEnwxo4dN0gI8Sch0UBFYTnOBnwk8WHnQLw9hqOGYjVbzIw0HyHHwEpgIE9X5WjnDlNZMahLgJIJtkMW0CheCNBqlyxYJUUBlar3yUFKK8aqSnGxIE_nE7Vx9r133g50wk38kfkjxFfah0jXETvvZj89UxdiDMmHiUY7I7VTR19s7CZMiYaejvY5v34zUjsM4TMdkr3eDgmPfnVJHq8uHy5uirv769uL87vCcVXNhQSQGtuuVarRmjWiZwIFYqM5FyIfyopr1LqWjNedyxvbFmSrsbZQN4wvycm2dx3D2wbTbEafHA6DnTBskoGGKw5a6up_q2okaJA1z1axtbq8OUXszTr60cZPA8x8Yzcrs8VuvrEbAJOx59jZNoZ58bvHaJLzOLkMMaKbTRf83wVfK_KMyg</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Xia, X.</creator><creator>Nie, J.F.</creator><creator>Davies, C.H.J.</creator><creator>Tang, W.N.</creator><creator>Xu, S.W.</creator><creator>Birbilis, N.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SE</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>2016</creationdate><title>An artificial neural network for predicting corrosion rate and hardness of magnesium alloys</title><author>Xia, X. ; Nie, J.F. ; Davies, C.H.J. ; Tang, W.N. ; Xu, S.W. ; Birbilis, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-61169ebdb77899084f04e4ee893344334e6239e9956035dc015bb16b9e5a15803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alloying</topic><topic>Alloying additive</topic><topic>Alloys</topic><topic>Corrosion</topic><topic>Dilution</topic><topic>Hardness</topic><topic>Magnesium</topic><topic>Magnesium base alloys</topic><topic>Mg alloys</topic><topic>Neural network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, X.</creatorcontrib><creatorcontrib>Nie, J.F.</creatorcontrib><creatorcontrib>Davies, C.H.J.</creatorcontrib><creatorcontrib>Tang, W.N.</creatorcontrib><creatorcontrib>Xu, S.W.</creatorcontrib><creatorcontrib>Birbilis, N.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Materials & design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, X.</au><au>Nie, J.F.</au><au>Davies, C.H.J.</au><au>Tang, W.N.</au><au>Xu, S.W.</au><au>Birbilis, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An artificial neural network for predicting corrosion rate and hardness of magnesium alloys</atitle><jtitle>Materials & design</jtitle><date>2016</date><risdate>2016</risdate><volume>90</volume><spage>1034</spage><epage>1043</epage><pages>1034-1043</pages><issn>0264-1275</issn><eissn>1873-4197</eissn><abstract>There presently exists a demand for development of magnesium (Mg) alloys for wrought applications. In this study, alloying additions of Zn, Ca, Zr, Gd and Sr to Mg were made in binary, ternary and quaternary combinations up to a maximum total alloy loading ~3wt.%, and thus termed dilute. Such dilute alloys were studied for the purposes of potential sheet applications. The corrosion of a total of 53 custom alloys was studied in conjunction with microhardness. The results reveal that hardness increased with total alloy loading, whilst the corrosion rates did not show any clear relationship with alloy loading. Corrosion of the tested alloys was instead very sensitive to both the type and amount of the unique alloying addition. This indicates that the optimisation of properties requires a detailed knowledge of the electrochemical influence of unique alloying additions. The work contributes to an understanding of compositional effects on the corrosion of Mg, and can be exploited in prediction of corrosion resistance of existing and future Mg alloys.
[Display omitted]
•Emerging Mg alloys for automotive sheet applications explored.•Mg alloys designed to optimise hardness with minimal increase in corrosion rate.•Artificial neural network (ANN) model constructed to manage complex data set.•ANN model accurately predicted alloy hardness and corrosion rate.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.matdes.2015.11.040</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-1275 |
ispartof | Materials & design, 2016, Vol.90, p.1034-1043 |
issn | 0264-1275 1873-4197 |
language | eng |
recordid | cdi_proquest_miscellaneous_1837319692 |
source | Alma/SFX Local Collection |
subjects | Alloying Alloying additive Alloys Corrosion Dilution Hardness Magnesium Magnesium base alloys Mg alloys Neural network |
title | An artificial neural network for predicting corrosion rate and hardness of magnesium alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A07%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20artificial%20neural%20network%20for%20predicting%20corrosion%20rate%20and%20hardness%20of%20magnesium%20alloys&rft.jtitle=Materials%20&%20design&rft.au=Xia,%20X.&rft.date=2016&rft.volume=90&rft.spage=1034&rft.epage=1043&rft.pages=1034-1043&rft.issn=0264-1275&rft.eissn=1873-4197&rft_id=info:doi/10.1016/j.matdes.2015.11.040&rft_dat=%3Cproquest_cross%3E1786191653%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786191653&rft_id=info:pmid/&rft_els_id=S0264127515307826&rfr_iscdi=true |