Fluoride Removal from Brackish Groundwaters by Constant Current Capacitive Deionization (CDI)

Charging capacitive deionization (CDI) at constant voltage (CV) produces an effluent stream in which ion concentrations vary with time. Compared to CV, charging CDI at constant current (CC) has several advantages, particularly a stable and adjustable effluent ion concentration. In this work, the fea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2016-10, Vol.50 (19), p.10570-10579
Hauptverfasser: Tang, Wangwang, Kovalsky, Peter, Cao, Baichuan, He, Di, Waite, T. David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Charging capacitive deionization (CDI) at constant voltage (CV) produces an effluent stream in which ion concentrations vary with time. Compared to CV, charging CDI at constant current (CC) has several advantages, particularly a stable and adjustable effluent ion concentration. In this work, the feasibility of removing fluoride from brackish groundwaters by single-pass constant-current (SPCC) CDI in both zero-volt and reverse-current desorption modes was investigated and a model developed to describe the selective electrosorption of fluoride and chloride. It was found that chloride is preferentially removed from the bulk solution during charging. Both experimental and theoretical results are presented showing effects of operating parameters, including adsorption/desorption current, pump flow rate and fluoride/chloride feed concentrations, on the effluent fluoride concentration, average fluoride adsorption rate and water recovery. Effects of design parameters are also discussed using the validated model. Finally, we describe a possible CDI assembly in which, under appropriate conditions, fluoride water quality targets can be met. The model developed here adequately describes the experimental results obtained and shows how change in the selected system design and operating conditions may impact treated water quality.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.6b03307