The temperature effect on cardiac ryanodine receptor gating and conductance: Mathematical modeling
The temperature effect on cardiac ryanodine receptor (RyR) function has been studied within the electron-conformational (EC) model. It’s shown that a simple EC model with an Arrhenius-like temperature dependence of the “internal” and “external” frictions and a specific thermosensitivity of the tunne...
Gespeichert in:
Veröffentlicht in: | Biophysics (Oxford) 2016-07, Vol.61 (4), p.614-621 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 621 |
---|---|
container_issue | 4 |
container_start_page | 614 |
container_title | Biophysics (Oxford) |
container_volume | 61 |
creator | Moskvin, A. S. Iaparov, B. I. Ryvkin, A. M. Solovyova, O. E. |
description | The temperature effect on cardiac ryanodine receptor (RyR) function has been studied within the electron-conformational (EC) model. It’s shown that a simple EC model with an Arrhenius-like temperature dependence of the “internal” and “external” frictions and a specific thermosensitivity of the tunnelling “open↔closed” transitions can provide both qualitative and quantitative description of the temperature effects for isolated RyRs. The potential of the model was illustrated by explaining the experimental data on the temperature dependence of isolated sheep cardiac RyR gating and conductance (R. Sitsapesan et al., J. Physiol.
434
, 469(1991)). |
doi_str_mv | 10.1134/S0006350916040175 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837311137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1837311137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2645-867d8ff66b31df1085ab0adbb712d1cb1d7057bf0942424e87da47564ec188a63</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9gssbAEfIk_UjZU8SUVMVDmyLEvbarELnYy9N_jqgwIhG644X3e0-kh5BLYDUDBb98ZY7IQbAaScQZKHJEJCCEyKQU_JpN9nO3zU3IW44Yx4IyLCamXa6QD9lsMehgDUmwaNAP1jhodbKsNDTvtvG0d0oAGt4MPdKWH1q2odpYa7-xoBu0M3tFXPayxT6HRHe29xS5h5-Sk0V3Ei-89JR-PD8v5c7Z4e3qZ3y8yk0suslIqWzaNlHUBtgFWCl0zbetaQW7B1GAVE6pu2IznabBUVnMlJEcDZallMSXXh7vb4D9HjEPVt9Fg12mHfowVlIUqINlSCb36hW78GFz6bk8lOTPF8kTBgTLBxxiwqbah7XXYVcCqvfXqj_XUyQ-dmFi3wvDj8r-lLxgMg1o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830019702</pqid></control><display><type>article</type><title>The temperature effect on cardiac ryanodine receptor gating and conductance: Mathematical modeling</title><source>Springer Nature - Complete Springer Journals</source><creator>Moskvin, A. S. ; Iaparov, B. I. ; Ryvkin, A. M. ; Solovyova, O. E.</creator><creatorcontrib>Moskvin, A. S. ; Iaparov, B. I. ; Ryvkin, A. M. ; Solovyova, O. E.</creatorcontrib><description>The temperature effect on cardiac ryanodine receptor (RyR) function has been studied within the electron-conformational (EC) model. It’s shown that a simple EC model with an Arrhenius-like temperature dependence of the “internal” and “external” frictions and a specific thermosensitivity of the tunnelling “open↔closed” transitions can provide both qualitative and quantitative description of the temperature effects for isolated RyRs. The potential of the model was illustrated by explaining the experimental data on the temperature dependence of isolated sheep cardiac RyR gating and conductance (R. Sitsapesan et al., J. Physiol.
434
, 469(1991)).</description><identifier>ISSN: 0006-3509</identifier><identifier>EISSN: 1555-6654</identifier><identifier>DOI: 10.1134/S0006350916040175</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Biological and Medical Physics ; Biophysics ; Cardiology ; Cell Biophysics ; Conductivity ; Mathematical models ; Neurons ; Physics ; Physics and Astronomy ; Temperature effects</subject><ispartof>Biophysics (Oxford), 2016-07, Vol.61 (4), p.614-621</ispartof><rights>Pleiades Publishing, Inc. 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2645-867d8ff66b31df1085ab0adbb712d1cb1d7057bf0942424e87da47564ec188a63</citedby><cites>FETCH-LOGICAL-c2645-867d8ff66b31df1085ab0adbb712d1cb1d7057bf0942424e87da47564ec188a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0006350916040175$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0006350916040175$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Moskvin, A. S.</creatorcontrib><creatorcontrib>Iaparov, B. I.</creatorcontrib><creatorcontrib>Ryvkin, A. M.</creatorcontrib><creatorcontrib>Solovyova, O. E.</creatorcontrib><title>The temperature effect on cardiac ryanodine receptor gating and conductance: Mathematical modeling</title><title>Biophysics (Oxford)</title><addtitle>BIOPHYSICS</addtitle><description>The temperature effect on cardiac ryanodine receptor (RyR) function has been studied within the electron-conformational (EC) model. It’s shown that a simple EC model with an Arrhenius-like temperature dependence of the “internal” and “external” frictions and a specific thermosensitivity of the tunnelling “open↔closed” transitions can provide both qualitative and quantitative description of the temperature effects for isolated RyRs. The potential of the model was illustrated by explaining the experimental data on the temperature dependence of isolated sheep cardiac RyR gating and conductance (R. Sitsapesan et al., J. Physiol.
434
, 469(1991)).</description><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Cardiology</subject><subject>Cell Biophysics</subject><subject>Conductivity</subject><subject>Mathematical models</subject><subject>Neurons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Temperature effects</subject><issn>0006-3509</issn><issn>1555-6654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kD1PwzAQhi0EEqXwA9gssbAEfIk_UjZU8SUVMVDmyLEvbarELnYy9N_jqgwIhG644X3e0-kh5BLYDUDBb98ZY7IQbAaScQZKHJEJCCEyKQU_JpN9nO3zU3IW44Yx4IyLCamXa6QD9lsMehgDUmwaNAP1jhodbKsNDTvtvG0d0oAGt4MPdKWH1q2odpYa7-xoBu0M3tFXPayxT6HRHe29xS5h5-Sk0V3Ei-89JR-PD8v5c7Z4e3qZ3y8yk0suslIqWzaNlHUBtgFWCl0zbetaQW7B1GAVE6pu2IznabBUVnMlJEcDZallMSXXh7vb4D9HjEPVt9Fg12mHfowVlIUqINlSCb36hW78GFz6bk8lOTPF8kTBgTLBxxiwqbah7XXYVcCqvfXqj_XUyQ-dmFi3wvDj8r-lLxgMg1o</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Moskvin, A. S.</creator><creator>Iaparov, B. I.</creator><creator>Ryvkin, A. M.</creator><creator>Solovyova, O. E.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7QO</scope></search><sort><creationdate>20160701</creationdate><title>The temperature effect on cardiac ryanodine receptor gating and conductance: Mathematical modeling</title><author>Moskvin, A. S. ; Iaparov, B. I. ; Ryvkin, A. M. ; Solovyova, O. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2645-867d8ff66b31df1085ab0adbb712d1cb1d7057bf0942424e87da47564ec188a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Cardiology</topic><topic>Cell Biophysics</topic><topic>Conductivity</topic><topic>Mathematical models</topic><topic>Neurons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Temperature effects</topic><toplevel>online_resources</toplevel><creatorcontrib>Moskvin, A. S.</creatorcontrib><creatorcontrib>Iaparov, B. I.</creatorcontrib><creatorcontrib>Ryvkin, A. M.</creatorcontrib><creatorcontrib>Solovyova, O. E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Biophysics (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moskvin, A. S.</au><au>Iaparov, B. I.</au><au>Ryvkin, A. M.</au><au>Solovyova, O. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The temperature effect on cardiac ryanodine receptor gating and conductance: Mathematical modeling</atitle><jtitle>Biophysics (Oxford)</jtitle><stitle>BIOPHYSICS</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>61</volume><issue>4</issue><spage>614</spage><epage>621</epage><pages>614-621</pages><issn>0006-3509</issn><eissn>1555-6654</eissn><abstract>The temperature effect on cardiac ryanodine receptor (RyR) function has been studied within the electron-conformational (EC) model. It’s shown that a simple EC model with an Arrhenius-like temperature dependence of the “internal” and “external” frictions and a specific thermosensitivity of the tunnelling “open↔closed” transitions can provide both qualitative and quantitative description of the temperature effects for isolated RyRs. The potential of the model was illustrated by explaining the experimental data on the temperature dependence of isolated sheep cardiac RyR gating and conductance (R. Sitsapesan et al., J. Physiol.
434
, 469(1991)).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0006350916040175</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3509 |
ispartof | Biophysics (Oxford), 2016-07, Vol.61 (4), p.614-621 |
issn | 0006-3509 1555-6654 |
language | eng |
recordid | cdi_proquest_miscellaneous_1837311137 |
source | Springer Nature - Complete Springer Journals |
subjects | Biological and Medical Physics Biophysics Cardiology Cell Biophysics Conductivity Mathematical models Neurons Physics Physics and Astronomy Temperature effects |
title | The temperature effect on cardiac ryanodine receptor gating and conductance: Mathematical modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A50%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20temperature%20effect%20on%20cardiac%20ryanodine%20receptor%20gating%20and%20conductance:%20Mathematical%20modeling&rft.jtitle=Biophysics%20(Oxford)&rft.au=Moskvin,%20A.%20S.&rft.date=2016-07-01&rft.volume=61&rft.issue=4&rft.spage=614&rft.epage=621&rft.pages=614-621&rft.issn=0006-3509&rft.eissn=1555-6654&rft_id=info:doi/10.1134/S0006350916040175&rft_dat=%3Cproquest_cross%3E1837311137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1830019702&rft_id=info:pmid/&rfr_iscdi=true |