Rapid and profound rewiring of brain lipid signaling networks by acute diacylglycerol lipase inhibition

Diacylglycerol lipases (DAGLα and DAGLβ) convert diacylglycerol to the endocannabinoid 2-arachidonoylglycerol. Our understanding of DAGL function has been hindered by a lack of chemical probes that can perturb these enzymes in vivo. Here, we report a set of centrally active DAGL inhibitors and a str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2016-01, Vol.113 (1), p.26-33
Hauptverfasser: Ogasawara, Daisuke, Deng, Hui, Viader, Andreu, Baggelaar, Marc P., Breman, Arjen, den Dulk, Hans, van den Nieuwendijk, Adrianus M. C. H., Soethoudt, Marjolein, van der Wel, Tom, Zhou, Juan, Overkleeft, Herman S., Sanchez-Alavez, Manuel, Mori, Simone, Nguyen, William, Conti, Bruno, Liu, Xiaojie, Chen, Yao, Liu, Qing-song, Cravatt, Benjamin F., van der Stelt, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue 1
container_start_page 26
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Ogasawara, Daisuke
Deng, Hui
Viader, Andreu
Baggelaar, Marc P.
Breman, Arjen
den Dulk, Hans
van den Nieuwendijk, Adrianus M. C. H.
Soethoudt, Marjolein
van der Wel, Tom
Zhou, Juan
Overkleeft, Herman S.
Sanchez-Alavez, Manuel
Mori, Simone
Nguyen, William
Conti, Bruno
Liu, Xiaojie
Chen, Yao
Liu, Qing-song
Cravatt, Benjamin F.
van der Stelt, Mario
description Diacylglycerol lipases (DAGLα and DAGLβ) convert diacylglycerol to the endocannabinoid 2-arachidonoylglycerol. Our understanding of DAGL function has been hindered by a lack of chemical probes that can perturb these enzymes in vivo. Here, we report a set of centrally active DAGL inhibitors and a structurally related control probe and their use, in combination with chemical proteomics and lipidomics, to determine the impact of acute DAGL blockade on brain lipid networks in mice. Within 2 h, DAGL inhibition produced a striking reorganization of bioactive lipids, including elevations in DAGs and reductions in endocannabinoids and eicosanoids. We also found that DAGLα is a short half-life protein, and the inactivation of DAGLs disrupts cannabinoid receptor-dependent synaptic plasticity and impairs neuroinflammatory responses, including lipopolysaccharide-induced anapyrexia. These findings illuminate the highly interconnected and dynamic nature of lipid signaling pathways in the brain and the central role that DAGL enzymes play in regulating this network.
doi_str_mv 10.1073/pnas.1522364112
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837310716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26467284</jstor_id><sourcerecordid>26467284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-6bea3362d25a3a2cff6d91a00dd2b34926892da716911c36ce113504e5b9e5963</originalsourceid><addsrcrecordid>eNqFkc2L1TAUxYMoznN07UYl4MZNZ3Lz1WQjyOAXDAii65CmaSfPvqQmrcP77219z-foxlUC53dObu5B6CmQCyA1uxyjLRcgKGWSA9B7aANEQyW5JvfRhhBaV4pTfoYelbIlhGihyEN0RqWUigm1Qf1nO4YW29jiMacuzcsl-9uQQ-xx6nCTbYh4CCtUQh_tsArRT7cpfyu42WPr5snjNli3H_ph73xOw2qwxeMQb0ITppDiY_Sgs0PxT47nOfr67u2Xqw_V9af3H6_eXFdOSDZVsvGWMUlbKiyz1HWdbDVYQtqWNoxrKpWmra1BagDHpPMATBDuRaO90JKdo9eH3HFudr51Pk7ZDmbMYWfz3iQbzN9KDDemTz8MrwFUDUvAq2NATt9nXyazC8X5YbDRp7kYUKxmy-5B_h-tBRdUMEYX9OU_6DbNednmL0oTqpha3748UC6nUrLvTnMDMWvfZu3b_Ol7cby4-90T_7vgBXh2BFbnKQ6YgQVa5OcHeVumlO_Yuayp4uwnmtq63g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759028381</pqid></control><display><type>article</type><title>Rapid and profound rewiring of brain lipid signaling networks by acute diacylglycerol lipase inhibition</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ogasawara, Daisuke ; Deng, Hui ; Viader, Andreu ; Baggelaar, Marc P. ; Breman, Arjen ; den Dulk, Hans ; van den Nieuwendijk, Adrianus M. C. H. ; Soethoudt, Marjolein ; van der Wel, Tom ; Zhou, Juan ; Overkleeft, Herman S. ; Sanchez-Alavez, Manuel ; Mori, Simone ; Nguyen, William ; Conti, Bruno ; Liu, Xiaojie ; Chen, Yao ; Liu, Qing-song ; Cravatt, Benjamin F. ; van der Stelt, Mario</creator><creatorcontrib>Ogasawara, Daisuke ; Deng, Hui ; Viader, Andreu ; Baggelaar, Marc P. ; Breman, Arjen ; den Dulk, Hans ; van den Nieuwendijk, Adrianus M. C. H. ; Soethoudt, Marjolein ; van der Wel, Tom ; Zhou, Juan ; Overkleeft, Herman S. ; Sanchez-Alavez, Manuel ; Mori, Simone ; Nguyen, William ; Conti, Bruno ; Liu, Xiaojie ; Chen, Yao ; Liu, Qing-song ; Cravatt, Benjamin F. ; van der Stelt, Mario</creatorcontrib><description>Diacylglycerol lipases (DAGLα and DAGLβ) convert diacylglycerol to the endocannabinoid 2-arachidonoylglycerol. Our understanding of DAGL function has been hindered by a lack of chemical probes that can perturb these enzymes in vivo. Here, we report a set of centrally active DAGL inhibitors and a structurally related control probe and their use, in combination with chemical proteomics and lipidomics, to determine the impact of acute DAGL blockade on brain lipid networks in mice. Within 2 h, DAGL inhibition produced a striking reorganization of bioactive lipids, including elevations in DAGs and reductions in endocannabinoids and eicosanoids. We also found that DAGLα is a short half-life protein, and the inactivation of DAGLs disrupts cannabinoid receptor-dependent synaptic plasticity and impairs neuroinflammatory responses, including lipopolysaccharide-induced anapyrexia. These findings illuminate the highly interconnected and dynamic nature of lipid signaling pathways in the brain and the central role that DAGL enzymes play in regulating this network.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1522364112</identifier><identifier>PMID: 26668358</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Arachidonic Acids - metabolism ; Biological Sciences ; Brain ; Brain - drug effects ; Brain - enzymology ; Brain - metabolism ; Diglycerides - metabolism ; Endocannabinoids - metabolism ; Enzyme Inhibitors - chemistry ; Enzyme Inhibitors - pharmacology ; Enzymes ; Glycerides - metabolism ; INAUGURAL ARTICLE ; Lipids ; Lipoprotein Lipase - antagonists &amp; inhibitors ; Lipoprotein Lipase - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Neuronal Plasticity - drug effects ; Proteomics ; Receptors, Cannabinoid - metabolism ; Rodents ; Signal Transduction - drug effects</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-01, Vol.113 (1), p.26-33</ispartof><rights>Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jan 5, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c563t-6bea3362d25a3a2cff6d91a00dd2b34926892da716911c36ce113504e5b9e5963</citedby><cites>FETCH-LOGICAL-c563t-6bea3362d25a3a2cff6d91a00dd2b34926892da716911c36ce113504e5b9e5963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/113/1.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26467284$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26467284$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26668358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ogasawara, Daisuke</creatorcontrib><creatorcontrib>Deng, Hui</creatorcontrib><creatorcontrib>Viader, Andreu</creatorcontrib><creatorcontrib>Baggelaar, Marc P.</creatorcontrib><creatorcontrib>Breman, Arjen</creatorcontrib><creatorcontrib>den Dulk, Hans</creatorcontrib><creatorcontrib>van den Nieuwendijk, Adrianus M. C. H.</creatorcontrib><creatorcontrib>Soethoudt, Marjolein</creatorcontrib><creatorcontrib>van der Wel, Tom</creatorcontrib><creatorcontrib>Zhou, Juan</creatorcontrib><creatorcontrib>Overkleeft, Herman S.</creatorcontrib><creatorcontrib>Sanchez-Alavez, Manuel</creatorcontrib><creatorcontrib>Mori, Simone</creatorcontrib><creatorcontrib>Nguyen, William</creatorcontrib><creatorcontrib>Conti, Bruno</creatorcontrib><creatorcontrib>Liu, Xiaojie</creatorcontrib><creatorcontrib>Chen, Yao</creatorcontrib><creatorcontrib>Liu, Qing-song</creatorcontrib><creatorcontrib>Cravatt, Benjamin F.</creatorcontrib><creatorcontrib>van der Stelt, Mario</creatorcontrib><title>Rapid and profound rewiring of brain lipid signaling networks by acute diacylglycerol lipase inhibition</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Diacylglycerol lipases (DAGLα and DAGLβ) convert diacylglycerol to the endocannabinoid 2-arachidonoylglycerol. Our understanding of DAGL function has been hindered by a lack of chemical probes that can perturb these enzymes in vivo. Here, we report a set of centrally active DAGL inhibitors and a structurally related control probe and their use, in combination with chemical proteomics and lipidomics, to determine the impact of acute DAGL blockade on brain lipid networks in mice. Within 2 h, DAGL inhibition produced a striking reorganization of bioactive lipids, including elevations in DAGs and reductions in endocannabinoids and eicosanoids. We also found that DAGLα is a short half-life protein, and the inactivation of DAGLs disrupts cannabinoid receptor-dependent synaptic plasticity and impairs neuroinflammatory responses, including lipopolysaccharide-induced anapyrexia. These findings illuminate the highly interconnected and dynamic nature of lipid signaling pathways in the brain and the central role that DAGL enzymes play in regulating this network.</description><subject>Animals</subject><subject>Arachidonic Acids - metabolism</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Brain - drug effects</subject><subject>Brain - enzymology</subject><subject>Brain - metabolism</subject><subject>Diglycerides - metabolism</subject><subject>Endocannabinoids - metabolism</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Enzymes</subject><subject>Glycerides - metabolism</subject><subject>INAUGURAL ARTICLE</subject><subject>Lipids</subject><subject>Lipoprotein Lipase - antagonists &amp; inhibitors</subject><subject>Lipoprotein Lipase - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neuronal Plasticity - drug effects</subject><subject>Proteomics</subject><subject>Receptors, Cannabinoid - metabolism</subject><subject>Rodents</subject><subject>Signal Transduction - drug effects</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc2L1TAUxYMoznN07UYl4MZNZ3Lz1WQjyOAXDAii65CmaSfPvqQmrcP77219z-foxlUC53dObu5B6CmQCyA1uxyjLRcgKGWSA9B7aANEQyW5JvfRhhBaV4pTfoYelbIlhGihyEN0RqWUigm1Qf1nO4YW29jiMacuzcsl-9uQQ-xx6nCTbYh4CCtUQh_tsArRT7cpfyu42WPr5snjNli3H_ph73xOw2qwxeMQb0ITppDiY_Sgs0PxT47nOfr67u2Xqw_V9af3H6_eXFdOSDZVsvGWMUlbKiyz1HWdbDVYQtqWNoxrKpWmra1BagDHpPMATBDuRaO90JKdo9eH3HFudr51Pk7ZDmbMYWfz3iQbzN9KDDemTz8MrwFUDUvAq2NATt9nXyazC8X5YbDRp7kYUKxmy-5B_h-tBRdUMEYX9OU_6DbNednmL0oTqpha3748UC6nUrLvTnMDMWvfZu3b_Ol7cby4-90T_7vgBXh2BFbnKQ6YgQVa5OcHeVumlO_Yuayp4uwnmtq63g</recordid><startdate>20160105</startdate><enddate>20160105</enddate><creator>Ogasawara, Daisuke</creator><creator>Deng, Hui</creator><creator>Viader, Andreu</creator><creator>Baggelaar, Marc P.</creator><creator>Breman, Arjen</creator><creator>den Dulk, Hans</creator><creator>van den Nieuwendijk, Adrianus M. C. H.</creator><creator>Soethoudt, Marjolein</creator><creator>van der Wel, Tom</creator><creator>Zhou, Juan</creator><creator>Overkleeft, Herman S.</creator><creator>Sanchez-Alavez, Manuel</creator><creator>Mori, Simone</creator><creator>Nguyen, William</creator><creator>Conti, Bruno</creator><creator>Liu, Xiaojie</creator><creator>Chen, Yao</creator><creator>Liu, Qing-song</creator><creator>Cravatt, Benjamin F.</creator><creator>van der Stelt, Mario</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20160105</creationdate><title>Rapid and profound rewiring of brain lipid signaling networks by acute diacylglycerol lipase inhibition</title><author>Ogasawara, Daisuke ; Deng, Hui ; Viader, Andreu ; Baggelaar, Marc P. ; Breman, Arjen ; den Dulk, Hans ; van den Nieuwendijk, Adrianus M. C. H. ; Soethoudt, Marjolein ; van der Wel, Tom ; Zhou, Juan ; Overkleeft, Herman S. ; Sanchez-Alavez, Manuel ; Mori, Simone ; Nguyen, William ; Conti, Bruno ; Liu, Xiaojie ; Chen, Yao ; Liu, Qing-song ; Cravatt, Benjamin F. ; van der Stelt, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-6bea3362d25a3a2cff6d91a00dd2b34926892da716911c36ce113504e5b9e5963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Arachidonic Acids - metabolism</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Brain - drug effects</topic><topic>Brain - enzymology</topic><topic>Brain - metabolism</topic><topic>Diglycerides - metabolism</topic><topic>Endocannabinoids - metabolism</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Enzymes</topic><topic>Glycerides - metabolism</topic><topic>INAUGURAL ARTICLE</topic><topic>Lipids</topic><topic>Lipoprotein Lipase - antagonists &amp; inhibitors</topic><topic>Lipoprotein Lipase - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neuronal Plasticity - drug effects</topic><topic>Proteomics</topic><topic>Receptors, Cannabinoid - metabolism</topic><topic>Rodents</topic><topic>Signal Transduction - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogasawara, Daisuke</creatorcontrib><creatorcontrib>Deng, Hui</creatorcontrib><creatorcontrib>Viader, Andreu</creatorcontrib><creatorcontrib>Baggelaar, Marc P.</creatorcontrib><creatorcontrib>Breman, Arjen</creatorcontrib><creatorcontrib>den Dulk, Hans</creatorcontrib><creatorcontrib>van den Nieuwendijk, Adrianus M. C. H.</creatorcontrib><creatorcontrib>Soethoudt, Marjolein</creatorcontrib><creatorcontrib>van der Wel, Tom</creatorcontrib><creatorcontrib>Zhou, Juan</creatorcontrib><creatorcontrib>Overkleeft, Herman S.</creatorcontrib><creatorcontrib>Sanchez-Alavez, Manuel</creatorcontrib><creatorcontrib>Mori, Simone</creatorcontrib><creatorcontrib>Nguyen, William</creatorcontrib><creatorcontrib>Conti, Bruno</creatorcontrib><creatorcontrib>Liu, Xiaojie</creatorcontrib><creatorcontrib>Chen, Yao</creatorcontrib><creatorcontrib>Liu, Qing-song</creatorcontrib><creatorcontrib>Cravatt, Benjamin F.</creatorcontrib><creatorcontrib>van der Stelt, Mario</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogasawara, Daisuke</au><au>Deng, Hui</au><au>Viader, Andreu</au><au>Baggelaar, Marc P.</au><au>Breman, Arjen</au><au>den Dulk, Hans</au><au>van den Nieuwendijk, Adrianus M. C. H.</au><au>Soethoudt, Marjolein</au><au>van der Wel, Tom</au><au>Zhou, Juan</au><au>Overkleeft, Herman S.</au><au>Sanchez-Alavez, Manuel</au><au>Mori, Simone</au><au>Nguyen, William</au><au>Conti, Bruno</au><au>Liu, Xiaojie</au><au>Chen, Yao</au><au>Liu, Qing-song</au><au>Cravatt, Benjamin F.</au><au>van der Stelt, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid and profound rewiring of brain lipid signaling networks by acute diacylglycerol lipase inhibition</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2016-01-05</date><risdate>2016</risdate><volume>113</volume><issue>1</issue><spage>26</spage><epage>33</epage><pages>26-33</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Diacylglycerol lipases (DAGLα and DAGLβ) convert diacylglycerol to the endocannabinoid 2-arachidonoylglycerol. Our understanding of DAGL function has been hindered by a lack of chemical probes that can perturb these enzymes in vivo. Here, we report a set of centrally active DAGL inhibitors and a structurally related control probe and their use, in combination with chemical proteomics and lipidomics, to determine the impact of acute DAGL blockade on brain lipid networks in mice. Within 2 h, DAGL inhibition produced a striking reorganization of bioactive lipids, including elevations in DAGs and reductions in endocannabinoids and eicosanoids. We also found that DAGLα is a short half-life protein, and the inactivation of DAGLs disrupts cannabinoid receptor-dependent synaptic plasticity and impairs neuroinflammatory responses, including lipopolysaccharide-induced anapyrexia. These findings illuminate the highly interconnected and dynamic nature of lipid signaling pathways in the brain and the central role that DAGL enzymes play in regulating this network.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26668358</pmid><doi>10.1073/pnas.1522364112</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-01, Vol.113 (1), p.26-33
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1837310716
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Arachidonic Acids - metabolism
Biological Sciences
Brain
Brain - drug effects
Brain - enzymology
Brain - metabolism
Diglycerides - metabolism
Endocannabinoids - metabolism
Enzyme Inhibitors - chemistry
Enzyme Inhibitors - pharmacology
Enzymes
Glycerides - metabolism
INAUGURAL ARTICLE
Lipids
Lipoprotein Lipase - antagonists & inhibitors
Lipoprotein Lipase - metabolism
Male
Mice
Mice, Inbred C57BL
Neuronal Plasticity - drug effects
Proteomics
Receptors, Cannabinoid - metabolism
Rodents
Signal Transduction - drug effects
title Rapid and profound rewiring of brain lipid signaling networks by acute diacylglycerol lipase inhibition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A26%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20and%20profound%20rewiring%20of%20brain%20lipid%20signaling%20networks%20by%20acute%20diacylglycerol%20lipase%20inhibition&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ogasawara,%20Daisuke&rft.date=2016-01-05&rft.volume=113&rft.issue=1&rft.spage=26&rft.epage=33&rft.pages=26-33&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1522364112&rft_dat=%3Cjstor_proqu%3E26467284%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759028381&rft_id=info:pmid/26668358&rft_jstor_id=26467284&rfr_iscdi=true