Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis

► Milk was adulterated with five different adulterants in five levels. ► MIR spectra exhibited specific bands for each adulterant. ► SIMCA models allowing discrimination of control from adulterated milk. ► PLSR models showed a strong predicted ability with high and low errors (SEP). ► MIR-microspect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food chemistry 2013-05, Vol.138 (1), p.19-24
Hauptverfasser: Santos, P.M., Pereira-Filho, E.R., Rodriguez-Saona, L.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 1
container_start_page 19
container_title Food chemistry
container_volume 138
creator Santos, P.M.
Pereira-Filho, E.R.
Rodriguez-Saona, L.E.
description ► Milk was adulterated with five different adulterants in five levels. ► MIR spectra exhibited specific bands for each adulterant. ► SIMCA models allowing discrimination of control from adulterated milk. ► PLSR models showed a strong predicted ability with high and low errors (SEP). ► MIR-microspectroscopy is a simple and fast method to monitor milk authenticity. The application of attenuated total reflectance mid-infrared microspectroscopy (MIR-microspectroscopy) was evaluated as a rapid method for detection and quantification of milk adulteration. Milk samples were purchased from local grocery stores (Columbus, OH, USA) and spiked at different concentrations of whey, hydrogen peroxide, synthetic urine, urea and synthetic milk. Samples were place on a 192-well microarray slide, air-dried and spectra were collected by using MIR-microspectroscopy. Pattern recognition analysis by Soft Independent Modeling of Class Analogy (SIMCA) showed tight and well-separated clusters allowing discrimination of control samples from adulterated milk. Partial Least Squares Regression (PLSR) showed standard error of prediction (SEP) ∼2.33, 0.06, 0.41, 0.30 and 0.014g/L for estimation of levels of adulteration with whey, synthetic milk, synthetic urine, urea and hydrogen peroxide, respectively. Results showed that MIR-microspectroscopy can provide an alternative methodology to the dairy industry for screening potential fraudulent practice for economic adulteration of cow’s milk.
doi_str_mv 10.1016/j.foodchem.2012.10.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837309184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030881461201535X</els_id><sourcerecordid>1837309184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-94ecb54ae5a50804b768491163f5b55de7dbe231edbccede7b2d4a15b68a64b23</originalsourceid><addsrcrecordid>eNqFkUtv1TAQhS0EoreFv1Blg8QmF7_t7EAVj0qVkBCsLT8m4EsSp3aCdP89Tu8tLLsa-eib8cw5CF0TvCeYyHeHfZ9S8L9g3FNMaBX3mPJnaEe0Yq3Cij5HO8ywbjXh8gJdlnLAGFdWv0QXlFEpuMA7lL_ZOYYmwAJ-iWlq7BSa-9VOS-yjtw9S6psxDr8bG9ZhgXwS1xKnn02c-mwzhAr4nMpch9Ti03x8GLTtl0ZYcvSlCnY4llheoRe9HQq8Ptcr9OPTx-83X9q7r59vbz7ctZ4zsrQdB-8EtyCswBpzp6TmHSGS9cIJEUAFB5QRCM57qE9HA7dEOKmt5I6yK_T2NHfO6X6FspgxFg_DYCdIazFEM8VwRzR_GqWKCa5xpyoqT-h2b8nQmznH0eajIdhs0ZiDeYzGbNFseo2mNl6f_1jdCOFf22MWFXhzBmzxdqjGTj6W_5zsMGdq496fOKjm_YmQTfERpupBzNV_E1J8ape_Rk6y1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273548097</pqid></control><display><type>article</type><title>Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Santos, P.M. ; Pereira-Filho, E.R. ; Rodriguez-Saona, L.E.</creator><creatorcontrib>Santos, P.M. ; Pereira-Filho, E.R. ; Rodriguez-Saona, L.E.</creatorcontrib><description>► Milk was adulterated with five different adulterants in five levels. ► MIR spectra exhibited specific bands for each adulterant. ► SIMCA models allowing discrimination of control from adulterated milk. ► PLSR models showed a strong predicted ability with high and low errors (SEP). ► MIR-microspectroscopy is a simple and fast method to monitor milk authenticity. The application of attenuated total reflectance mid-infrared microspectroscopy (MIR-microspectroscopy) was evaluated as a rapid method for detection and quantification of milk adulteration. Milk samples were purchased from local grocery stores (Columbus, OH, USA) and spiked at different concentrations of whey, hydrogen peroxide, synthetic urine, urea and synthetic milk. Samples were place on a 192-well microarray slide, air-dried and spectra were collected by using MIR-microspectroscopy. Pattern recognition analysis by Soft Independent Modeling of Class Analogy (SIMCA) showed tight and well-separated clusters allowing discrimination of control samples from adulterated milk. Partial Least Squares Regression (PLSR) showed standard error of prediction (SEP) ∼2.33, 0.06, 0.41, 0.30 and 0.014g/L for estimation of levels of adulteration with whey, synthetic milk, synthetic urine, urea and hydrogen peroxide, respectively. Results showed that MIR-microspectroscopy can provide an alternative methodology to the dairy industry for screening potential fraudulent practice for economic adulteration of cow’s milk.</description><identifier>ISSN: 0308-8146</identifier><identifier>EISSN: 1873-7072</identifier><identifier>DOI: 10.1016/j.foodchem.2012.10.024</identifier><identifier>PMID: 23265450</identifier><identifier>CODEN: FOCHDJ</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Animals ; Biological and medical sciences ; Cattle ; Chemistry Techniques, Analytical - methods ; Chemometric analysis ; Food Contamination - analysis ; Food industries ; Fundamental and applied biological sciences. Psychology ; General aspects ; Methods of analysis, processing and quality control, regulation, standards ; Milk - chemistry ; Milk adulteration ; Milk and cheese industries. Ice creams ; MIR-microspectroscopy spectra ; Spectroscopy, Fourier Transform Infrared - methods</subject><ispartof>Food chemistry, 2013-05, Vol.138 (1), p.19-24</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-94ecb54ae5a50804b768491163f5b55de7dbe231edbccede7b2d4a15b68a64b23</citedby><cites>FETCH-LOGICAL-c431t-94ecb54ae5a50804b768491163f5b55de7dbe231edbccede7b2d4a15b68a64b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030881461201535X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26904370$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23265450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santos, P.M.</creatorcontrib><creatorcontrib>Pereira-Filho, E.R.</creatorcontrib><creatorcontrib>Rodriguez-Saona, L.E.</creatorcontrib><title>Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis</title><title>Food chemistry</title><addtitle>Food Chem</addtitle><description>► Milk was adulterated with five different adulterants in five levels. ► MIR spectra exhibited specific bands for each adulterant. ► SIMCA models allowing discrimination of control from adulterated milk. ► PLSR models showed a strong predicted ability with high and low errors (SEP). ► MIR-microspectroscopy is a simple and fast method to monitor milk authenticity. The application of attenuated total reflectance mid-infrared microspectroscopy (MIR-microspectroscopy) was evaluated as a rapid method for detection and quantification of milk adulteration. Milk samples were purchased from local grocery stores (Columbus, OH, USA) and spiked at different concentrations of whey, hydrogen peroxide, synthetic urine, urea and synthetic milk. Samples were place on a 192-well microarray slide, air-dried and spectra were collected by using MIR-microspectroscopy. Pattern recognition analysis by Soft Independent Modeling of Class Analogy (SIMCA) showed tight and well-separated clusters allowing discrimination of control samples from adulterated milk. Partial Least Squares Regression (PLSR) showed standard error of prediction (SEP) ∼2.33, 0.06, 0.41, 0.30 and 0.014g/L for estimation of levels of adulteration with whey, synthetic milk, synthetic urine, urea and hydrogen peroxide, respectively. Results showed that MIR-microspectroscopy can provide an alternative methodology to the dairy industry for screening potential fraudulent practice for economic adulteration of cow’s milk.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cattle</subject><subject>Chemistry Techniques, Analytical - methods</subject><subject>Chemometric analysis</subject><subject>Food Contamination - analysis</subject><subject>Food industries</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Methods of analysis, processing and quality control, regulation, standards</subject><subject>Milk - chemistry</subject><subject>Milk adulteration</subject><subject>Milk and cheese industries. Ice creams</subject><subject>MIR-microspectroscopy spectra</subject><subject>Spectroscopy, Fourier Transform Infrared - methods</subject><issn>0308-8146</issn><issn>1873-7072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1TAQhS0EoreFv1Blg8QmF7_t7EAVj0qVkBCsLT8m4EsSp3aCdP89Tu8tLLsa-eib8cw5CF0TvCeYyHeHfZ9S8L9g3FNMaBX3mPJnaEe0Yq3Cij5HO8ywbjXh8gJdlnLAGFdWv0QXlFEpuMA7lL_ZOYYmwAJ-iWlq7BSa-9VOS-yjtw9S6psxDr8bG9ZhgXwS1xKnn02c-mwzhAr4nMpch9Ti03x8GLTtl0ZYcvSlCnY4llheoRe9HQq8Ptcr9OPTx-83X9q7r59vbz7ctZ4zsrQdB-8EtyCswBpzp6TmHSGS9cIJEUAFB5QRCM57qE9HA7dEOKmt5I6yK_T2NHfO6X6FspgxFg_DYCdIazFEM8VwRzR_GqWKCa5xpyoqT-h2b8nQmznH0eajIdhs0ZiDeYzGbNFseo2mNl6f_1jdCOFf22MWFXhzBmzxdqjGTj6W_5zsMGdq496fOKjm_YmQTfERpupBzNV_E1J8ape_Rk6y1A</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Santos, P.M.</creator><creator>Pereira-Filho, E.R.</creator><creator>Rodriguez-Saona, L.E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>20130501</creationdate><title>Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis</title><author>Santos, P.M. ; Pereira-Filho, E.R. ; Rodriguez-Saona, L.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-94ecb54ae5a50804b768491163f5b55de7dbe231edbccede7b2d4a15b68a64b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cattle</topic><topic>Chemistry Techniques, Analytical - methods</topic><topic>Chemometric analysis</topic><topic>Food Contamination - analysis</topic><topic>Food industries</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Methods of analysis, processing and quality control, regulation, standards</topic><topic>Milk - chemistry</topic><topic>Milk adulteration</topic><topic>Milk and cheese industries. Ice creams</topic><topic>MIR-microspectroscopy spectra</topic><topic>Spectroscopy, Fourier Transform Infrared - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, P.M.</creatorcontrib><creatorcontrib>Pereira-Filho, E.R.</creatorcontrib><creatorcontrib>Rodriguez-Saona, L.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, P.M.</au><au>Pereira-Filho, E.R.</au><au>Rodriguez-Saona, L.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis</atitle><jtitle>Food chemistry</jtitle><addtitle>Food Chem</addtitle><date>2013-05-01</date><risdate>2013</risdate><volume>138</volume><issue>1</issue><spage>19</spage><epage>24</epage><pages>19-24</pages><issn>0308-8146</issn><eissn>1873-7072</eissn><coden>FOCHDJ</coden><abstract>► Milk was adulterated with five different adulterants in five levels. ► MIR spectra exhibited specific bands for each adulterant. ► SIMCA models allowing discrimination of control from adulterated milk. ► PLSR models showed a strong predicted ability with high and low errors (SEP). ► MIR-microspectroscopy is a simple and fast method to monitor milk authenticity. The application of attenuated total reflectance mid-infrared microspectroscopy (MIR-microspectroscopy) was evaluated as a rapid method for detection and quantification of milk adulteration. Milk samples were purchased from local grocery stores (Columbus, OH, USA) and spiked at different concentrations of whey, hydrogen peroxide, synthetic urine, urea and synthetic milk. Samples were place on a 192-well microarray slide, air-dried and spectra were collected by using MIR-microspectroscopy. Pattern recognition analysis by Soft Independent Modeling of Class Analogy (SIMCA) showed tight and well-separated clusters allowing discrimination of control samples from adulterated milk. Partial Least Squares Regression (PLSR) showed standard error of prediction (SEP) ∼2.33, 0.06, 0.41, 0.30 and 0.014g/L for estimation of levels of adulteration with whey, synthetic milk, synthetic urine, urea and hydrogen peroxide, respectively. Results showed that MIR-microspectroscopy can provide an alternative methodology to the dairy industry for screening potential fraudulent practice for economic adulteration of cow’s milk.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>23265450</pmid><doi>10.1016/j.foodchem.2012.10.024</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0308-8146
ispartof Food chemistry, 2013-05, Vol.138 (1), p.19-24
issn 0308-8146
1873-7072
language eng
recordid cdi_proquest_miscellaneous_1837309184
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Biological and medical sciences
Cattle
Chemistry Techniques, Analytical - methods
Chemometric analysis
Food Contamination - analysis
Food industries
Fundamental and applied biological sciences. Psychology
General aspects
Methods of analysis, processing and quality control, regulation, standards
Milk - chemistry
Milk adulteration
Milk and cheese industries. Ice creams
MIR-microspectroscopy spectra
Spectroscopy, Fourier Transform Infrared - methods
title Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A59%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20detection%20and%20quantification%20of%20milk%20adulteration%20using%20infrared%20microspectroscopy%20and%20chemometrics%20analysis&rft.jtitle=Food%20chemistry&rft.au=Santos,%20P.M.&rft.date=2013-05-01&rft.volume=138&rft.issue=1&rft.spage=19&rft.epage=24&rft.pages=19-24&rft.issn=0308-8146&rft.eissn=1873-7072&rft.coden=FOCHDJ&rft_id=info:doi/10.1016/j.foodchem.2012.10.024&rft_dat=%3Cproquest_cross%3E1837309184%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1273548097&rft_id=info:pmid/23265450&rft_els_id=S030881461201535X&rfr_iscdi=true