Protein kinase C controls lysosome biogenesis independently of mTORC1

Lysosomes respond to environmental cues by controlling their own biogenesis, but the underlying mechanisms are poorly understood. Here we describe a protein kinase C (PKC)-dependent and mTORC1-independent mechanism for regulating lysosome biogenesis, which provides insights into previously reported...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2016-10, Vol.18 (10), p.1065-1077
Hauptverfasser: Li, Yang, Xu, Meng, Ding, Xiao, Yan, Chen, Song, Zhiqin, Chen, Lianwan, Huang, Xiahe, Wang, Xin, Jian, Youli, Tang, Guihua, Tang, Changyong, Di, Yingtong, Mu, Shuzhen, Liu, Xuezhao, Liu, Kai, Li, Ting, Wang, Yingchun, Miao, Long, Guo, Weixiang, Hao, Xiaojiang, Yang, Chonglin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1077
container_issue 10
container_start_page 1065
container_title Nature cell biology
container_volume 18
creator Li, Yang
Xu, Meng
Ding, Xiao
Yan, Chen
Song, Zhiqin
Chen, Lianwan
Huang, Xiahe
Wang, Xin
Jian, Youli
Tang, Guihua
Tang, Changyong
Di, Yingtong
Mu, Shuzhen
Liu, Xuezhao
Liu, Kai
Li, Ting
Wang, Yingchun
Miao, Long
Guo, Weixiang
Hao, Xiaojiang
Yang, Chonglin
description Lysosomes respond to environmental cues by controlling their own biogenesis, but the underlying mechanisms are poorly understood. Here we describe a protein kinase C (PKC)-dependent and mTORC1-independent mechanism for regulating lysosome biogenesis, which provides insights into previously reported effects of PKC on lysosomes. By identifying lysosome-inducing compounds we show that PKC couples activation of the TFEB transcription factor with inactivation of the ZKSCAN3 transcriptional repressor through two parallel signalling cascades. Activated PKC inactivates GSK3β, leading to reduced phosphorylation, nuclear translocation and activation of TFEB, while PKC activates JNK and p38 MAPK, which phosphorylate ZKSCAN3, leading to its inactivation by translocation out of the nucleus. PKC activation may therefore mediate lysosomal adaptation to many extracellular cues. PKC activators facilitate clearance of aggregated proteins and lipid droplets in cell models and ameliorate amyloid β plaque formation in APP/PS1 mouse brains. Thus, PKC activators are viable treatment options for lysosome-related disorders. Using a chemical screening approach, Yang and colleagues identify PKC as a regulator of lysosome biogenesis, which controls the subcellular localization of TFEB and ZKSCAN3 through parallel signalling pathways and independently of mTORC1.
doi_str_mv 10.1038/ncb3407
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837307408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632744333</galeid><sourcerecordid>A632744333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-44fd742212bd3d680f6a92cd533a6627630b4931383110e2921a9f46b22755123</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVpadJNyT8Ihh7aHpxoNLJkH8OStIFASj7OQrblxaktbTU2dP99tOymDTllDhqBnnk1My9jx8BPgWN55psaJdfv2CFIrXKpdPV-e1dFrrESB-wT0SPnIBP0kR0IrUBXyA_Zxa8YJtf77HfvLblsmTXBTzEMlA0bChRGl9V9WDnvqKes961bu3T4adhkocvG-5vbJRyxD50dyH3e5wV7uLy4X_7Mr29-XC3Pr_OmAJxyKbtWSyFA1C22quSdspVo2gLRKpWaQl7LCgFLBOBOVAJs1UlVC6GLAgQu2Led7jqGP7OjyYw9NW4YrHdhJgMlauRa8vINqCgEKEgFC_blFfoY5ujTIFtBQKE4V4n6vqNWdnCm99s9ub_Tys5E5uru1pwrFFpKTLFgX3dsEwNRdJ1Zx360cWOAm61hZm9YIk_2f8_16Np_3LND_-eg9ORXLr5o7pXWExmemQ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831326006</pqid></control><display><type>article</type><title>Protein kinase C controls lysosome biogenesis independently of mTORC1</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Li, Yang ; Xu, Meng ; Ding, Xiao ; Yan, Chen ; Song, Zhiqin ; Chen, Lianwan ; Huang, Xiahe ; Wang, Xin ; Jian, Youli ; Tang, Guihua ; Tang, Changyong ; Di, Yingtong ; Mu, Shuzhen ; Liu, Xuezhao ; Liu, Kai ; Li, Ting ; Wang, Yingchun ; Miao, Long ; Guo, Weixiang ; Hao, Xiaojiang ; Yang, Chonglin</creator><creatorcontrib>Li, Yang ; Xu, Meng ; Ding, Xiao ; Yan, Chen ; Song, Zhiqin ; Chen, Lianwan ; Huang, Xiahe ; Wang, Xin ; Jian, Youli ; Tang, Guihua ; Tang, Changyong ; Di, Yingtong ; Mu, Shuzhen ; Liu, Xuezhao ; Liu, Kai ; Li, Ting ; Wang, Yingchun ; Miao, Long ; Guo, Weixiang ; Hao, Xiaojiang ; Yang, Chonglin</creatorcontrib><description>Lysosomes respond to environmental cues by controlling their own biogenesis, but the underlying mechanisms are poorly understood. Here we describe a protein kinase C (PKC)-dependent and mTORC1-independent mechanism for regulating lysosome biogenesis, which provides insights into previously reported effects of PKC on lysosomes. By identifying lysosome-inducing compounds we show that PKC couples activation of the TFEB transcription factor with inactivation of the ZKSCAN3 transcriptional repressor through two parallel signalling cascades. Activated PKC inactivates GSK3β, leading to reduced phosphorylation, nuclear translocation and activation of TFEB, while PKC activates JNK and p38 MAPK, which phosphorylate ZKSCAN3, leading to its inactivation by translocation out of the nucleus. PKC activation may therefore mediate lysosomal adaptation to many extracellular cues. PKC activators facilitate clearance of aggregated proteins and lipid droplets in cell models and ameliorate amyloid β plaque formation in APP/PS1 mouse brains. Thus, PKC activators are viable treatment options for lysosome-related disorders. Using a chemical screening approach, Yang and colleagues identify PKC as a regulator of lysosome biogenesis, which controls the subcellular localization of TFEB and ZKSCAN3 through parallel signalling pathways and independently of mTORC1.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb3407</identifier><identifier>PMID: 27617930</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/106 ; 14/1 ; 14/19 ; 14/28 ; 14/34 ; 14/35 ; 38/109 ; 38/77 ; 38/88 ; 38/89 ; 38/90 ; 631/80/313 ; 631/80/642 ; 631/80/642/1624 ; 631/80/86 ; 82/58 ; 82/80 ; 82/83 ; 96/31 ; 96/44 ; 96/95 ; Animals ; Autophagy ; Biosynthesis ; Cancer Research ; Cell Biology ; Cell Nucleus - metabolism ; Cytological research ; Developmental Biology ; Inactivation ; Kinases ; Laboratories ; Life Sciences ; Lysosomes ; Lysosomes - metabolism ; Mechanistic Target of Rapamycin Complex 1 ; Metabolic Networks and Pathways ; Mice ; Multiprotein Complexes - metabolism ; p38 Mitogen-Activated Protein Kinases - metabolism ; Phosphorylation ; Physiological aspects ; Protein Kinase C - metabolism ; Protein kinases ; Protein Transport - physiology ; Proteins ; Stem Cells ; TOR Serine-Threonine Kinases - metabolism ; Transcription factors ; Transcription Factors - metabolism ; Translocation</subject><ispartof>Nature cell biology, 2016-10, Vol.18 (10), p.1065-1077</ispartof><rights>Springer Nature Limited 2016</rights><rights>COPYRIGHT 2016 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-44fd742212bd3d680f6a92cd533a6627630b4931383110e2921a9f46b22755123</citedby><cites>FETCH-LOGICAL-c513t-44fd742212bd3d680f6a92cd533a6627630b4931383110e2921a9f46b22755123</cites><orcidid>0000-0002-0562-6681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27617930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Xu, Meng</creatorcontrib><creatorcontrib>Ding, Xiao</creatorcontrib><creatorcontrib>Yan, Chen</creatorcontrib><creatorcontrib>Song, Zhiqin</creatorcontrib><creatorcontrib>Chen, Lianwan</creatorcontrib><creatorcontrib>Huang, Xiahe</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Jian, Youli</creatorcontrib><creatorcontrib>Tang, Guihua</creatorcontrib><creatorcontrib>Tang, Changyong</creatorcontrib><creatorcontrib>Di, Yingtong</creatorcontrib><creatorcontrib>Mu, Shuzhen</creatorcontrib><creatorcontrib>Liu, Xuezhao</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Li, Ting</creatorcontrib><creatorcontrib>Wang, Yingchun</creatorcontrib><creatorcontrib>Miao, Long</creatorcontrib><creatorcontrib>Guo, Weixiang</creatorcontrib><creatorcontrib>Hao, Xiaojiang</creatorcontrib><creatorcontrib>Yang, Chonglin</creatorcontrib><title>Protein kinase C controls lysosome biogenesis independently of mTORC1</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Lysosomes respond to environmental cues by controlling their own biogenesis, but the underlying mechanisms are poorly understood. Here we describe a protein kinase C (PKC)-dependent and mTORC1-independent mechanism for regulating lysosome biogenesis, which provides insights into previously reported effects of PKC on lysosomes. By identifying lysosome-inducing compounds we show that PKC couples activation of the TFEB transcription factor with inactivation of the ZKSCAN3 transcriptional repressor through two parallel signalling cascades. Activated PKC inactivates GSK3β, leading to reduced phosphorylation, nuclear translocation and activation of TFEB, while PKC activates JNK and p38 MAPK, which phosphorylate ZKSCAN3, leading to its inactivation by translocation out of the nucleus. PKC activation may therefore mediate lysosomal adaptation to many extracellular cues. PKC activators facilitate clearance of aggregated proteins and lipid droplets in cell models and ameliorate amyloid β plaque formation in APP/PS1 mouse brains. Thus, PKC activators are viable treatment options for lysosome-related disorders. Using a chemical screening approach, Yang and colleagues identify PKC as a regulator of lysosome biogenesis, which controls the subcellular localization of TFEB and ZKSCAN3 through parallel signalling pathways and independently of mTORC1.</description><subject>13</subject><subject>13/106</subject><subject>14/1</subject><subject>14/19</subject><subject>14/28</subject><subject>14/34</subject><subject>14/35</subject><subject>38/109</subject><subject>38/77</subject><subject>38/88</subject><subject>38/89</subject><subject>38/90</subject><subject>631/80/313</subject><subject>631/80/642</subject><subject>631/80/642/1624</subject><subject>631/80/86</subject><subject>82/58</subject><subject>82/80</subject><subject>82/83</subject><subject>96/31</subject><subject>96/44</subject><subject>96/95</subject><subject>Animals</subject><subject>Autophagy</subject><subject>Biosynthesis</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell Nucleus - metabolism</subject><subject>Cytological research</subject><subject>Developmental Biology</subject><subject>Inactivation</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Life Sciences</subject><subject>Lysosomes</subject><subject>Lysosomes - metabolism</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Metabolic Networks and Pathways</subject><subject>Mice</subject><subject>Multiprotein Complexes - metabolism</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Protein Kinase C - metabolism</subject><subject>Protein kinases</subject><subject>Protein Transport - physiology</subject><subject>Proteins</subject><subject>Stem Cells</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><subject>Translocation</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1r3DAQhkVpadJNyT8Ihh7aHpxoNLJkH8OStIFASj7OQrblxaktbTU2dP99tOymDTllDhqBnnk1My9jx8BPgWN55psaJdfv2CFIrXKpdPV-e1dFrrESB-wT0SPnIBP0kR0IrUBXyA_Zxa8YJtf77HfvLblsmTXBTzEMlA0bChRGl9V9WDnvqKes961bu3T4adhkocvG-5vbJRyxD50dyH3e5wV7uLy4X_7Mr29-XC3Pr_OmAJxyKbtWSyFA1C22quSdspVo2gLRKpWaQl7LCgFLBOBOVAJs1UlVC6GLAgQu2Led7jqGP7OjyYw9NW4YrHdhJgMlauRa8vINqCgEKEgFC_blFfoY5ujTIFtBQKE4V4n6vqNWdnCm99s9ub_Tys5E5uru1pwrFFpKTLFgX3dsEwNRdJ1Zx360cWOAm61hZm9YIk_2f8_16Np_3LND_-eg9ORXLr5o7pXWExmemQ4</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Li, Yang</creator><creator>Xu, Meng</creator><creator>Ding, Xiao</creator><creator>Yan, Chen</creator><creator>Song, Zhiqin</creator><creator>Chen, Lianwan</creator><creator>Huang, Xiahe</creator><creator>Wang, Xin</creator><creator>Jian, Youli</creator><creator>Tang, Guihua</creator><creator>Tang, Changyong</creator><creator>Di, Yingtong</creator><creator>Mu, Shuzhen</creator><creator>Liu, Xuezhao</creator><creator>Liu, Kai</creator><creator>Li, Ting</creator><creator>Wang, Yingchun</creator><creator>Miao, Long</creator><creator>Guo, Weixiang</creator><creator>Hao, Xiaojiang</creator><creator>Yang, Chonglin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0562-6681</orcidid></search><sort><creationdate>20161001</creationdate><title>Protein kinase C controls lysosome biogenesis independently of mTORC1</title><author>Li, Yang ; Xu, Meng ; Ding, Xiao ; Yan, Chen ; Song, Zhiqin ; Chen, Lianwan ; Huang, Xiahe ; Wang, Xin ; Jian, Youli ; Tang, Guihua ; Tang, Changyong ; Di, Yingtong ; Mu, Shuzhen ; Liu, Xuezhao ; Liu, Kai ; Li, Ting ; Wang, Yingchun ; Miao, Long ; Guo, Weixiang ; Hao, Xiaojiang ; Yang, Chonglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-44fd742212bd3d680f6a92cd533a6627630b4931383110e2921a9f46b22755123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13</topic><topic>13/106</topic><topic>14/1</topic><topic>14/19</topic><topic>14/28</topic><topic>14/34</topic><topic>14/35</topic><topic>38/109</topic><topic>38/77</topic><topic>38/88</topic><topic>38/89</topic><topic>38/90</topic><topic>631/80/313</topic><topic>631/80/642</topic><topic>631/80/642/1624</topic><topic>631/80/86</topic><topic>82/58</topic><topic>82/80</topic><topic>82/83</topic><topic>96/31</topic><topic>96/44</topic><topic>96/95</topic><topic>Animals</topic><topic>Autophagy</topic><topic>Biosynthesis</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell Nucleus - metabolism</topic><topic>Cytological research</topic><topic>Developmental Biology</topic><topic>Inactivation</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Life Sciences</topic><topic>Lysosomes</topic><topic>Lysosomes - metabolism</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Metabolic Networks and Pathways</topic><topic>Mice</topic><topic>Multiprotein Complexes - metabolism</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Protein Kinase C - metabolism</topic><topic>Protein kinases</topic><topic>Protein Transport - physiology</topic><topic>Proteins</topic><topic>Stem Cells</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Xu, Meng</creatorcontrib><creatorcontrib>Ding, Xiao</creatorcontrib><creatorcontrib>Yan, Chen</creatorcontrib><creatorcontrib>Song, Zhiqin</creatorcontrib><creatorcontrib>Chen, Lianwan</creatorcontrib><creatorcontrib>Huang, Xiahe</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Jian, Youli</creatorcontrib><creatorcontrib>Tang, Guihua</creatorcontrib><creatorcontrib>Tang, Changyong</creatorcontrib><creatorcontrib>Di, Yingtong</creatorcontrib><creatorcontrib>Mu, Shuzhen</creatorcontrib><creatorcontrib>Liu, Xuezhao</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Li, Ting</creatorcontrib><creatorcontrib>Wang, Yingchun</creatorcontrib><creatorcontrib>Miao, Long</creatorcontrib><creatorcontrib>Guo, Weixiang</creatorcontrib><creatorcontrib>Hao, Xiaojiang</creatorcontrib><creatorcontrib>Yang, Chonglin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yang</au><au>Xu, Meng</au><au>Ding, Xiao</au><au>Yan, Chen</au><au>Song, Zhiqin</au><au>Chen, Lianwan</au><au>Huang, Xiahe</au><au>Wang, Xin</au><au>Jian, Youli</au><au>Tang, Guihua</au><au>Tang, Changyong</au><au>Di, Yingtong</au><au>Mu, Shuzhen</au><au>Liu, Xuezhao</au><au>Liu, Kai</au><au>Li, Ting</au><au>Wang, Yingchun</au><au>Miao, Long</au><au>Guo, Weixiang</au><au>Hao, Xiaojiang</au><au>Yang, Chonglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein kinase C controls lysosome biogenesis independently of mTORC1</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>18</volume><issue>10</issue><spage>1065</spage><epage>1077</epage><pages>1065-1077</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Lysosomes respond to environmental cues by controlling their own biogenesis, but the underlying mechanisms are poorly understood. Here we describe a protein kinase C (PKC)-dependent and mTORC1-independent mechanism for regulating lysosome biogenesis, which provides insights into previously reported effects of PKC on lysosomes. By identifying lysosome-inducing compounds we show that PKC couples activation of the TFEB transcription factor with inactivation of the ZKSCAN3 transcriptional repressor through two parallel signalling cascades. Activated PKC inactivates GSK3β, leading to reduced phosphorylation, nuclear translocation and activation of TFEB, while PKC activates JNK and p38 MAPK, which phosphorylate ZKSCAN3, leading to its inactivation by translocation out of the nucleus. PKC activation may therefore mediate lysosomal adaptation to many extracellular cues. PKC activators facilitate clearance of aggregated proteins and lipid droplets in cell models and ameliorate amyloid β plaque formation in APP/PS1 mouse brains. Thus, PKC activators are viable treatment options for lysosome-related disorders. Using a chemical screening approach, Yang and colleagues identify PKC as a regulator of lysosome biogenesis, which controls the subcellular localization of TFEB and ZKSCAN3 through parallel signalling pathways and independently of mTORC1.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27617930</pmid><doi>10.1038/ncb3407</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0562-6681</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2016-10, Vol.18 (10), p.1065-1077
issn 1465-7392
1476-4679
language eng
recordid cdi_proquest_miscellaneous_1837307408
source MEDLINE; Nature; Alma/SFX Local Collection
subjects 13
13/106
14/1
14/19
14/28
14/34
14/35
38/109
38/77
38/88
38/89
38/90
631/80/313
631/80/642
631/80/642/1624
631/80/86
82/58
82/80
82/83
96/31
96/44
96/95
Animals
Autophagy
Biosynthesis
Cancer Research
Cell Biology
Cell Nucleus - metabolism
Cytological research
Developmental Biology
Inactivation
Kinases
Laboratories
Life Sciences
Lysosomes
Lysosomes - metabolism
Mechanistic Target of Rapamycin Complex 1
Metabolic Networks and Pathways
Mice
Multiprotein Complexes - metabolism
p38 Mitogen-Activated Protein Kinases - metabolism
Phosphorylation
Physiological aspects
Protein Kinase C - metabolism
Protein kinases
Protein Transport - physiology
Proteins
Stem Cells
TOR Serine-Threonine Kinases - metabolism
Transcription factors
Transcription Factors - metabolism
Translocation
title Protein kinase C controls lysosome biogenesis independently of mTORC1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T16%3A50%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20kinase%20C%20controls%20lysosome%20biogenesis%20independently%20of%20mTORC1&rft.jtitle=Nature%20cell%20biology&rft.au=Li,%20Yang&rft.date=2016-10-01&rft.volume=18&rft.issue=10&rft.spage=1065&rft.epage=1077&rft.pages=1065-1077&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb3407&rft_dat=%3Cgale_proqu%3EA632744333%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1831326006&rft_id=info:pmid/27617930&rft_galeid=A632744333&rfr_iscdi=true