Protein kinase C controls lysosome biogenesis independently of mTORC1
Lysosomes respond to environmental cues by controlling their own biogenesis, but the underlying mechanisms are poorly understood. Here we describe a protein kinase C (PKC)-dependent and mTORC1-independent mechanism for regulating lysosome biogenesis, which provides insights into previously reported...
Gespeichert in:
Veröffentlicht in: | Nature cell biology 2016-10, Vol.18 (10), p.1065-1077 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1077 |
---|---|
container_issue | 10 |
container_start_page | 1065 |
container_title | Nature cell biology |
container_volume | 18 |
creator | Li, Yang Xu, Meng Ding, Xiao Yan, Chen Song, Zhiqin Chen, Lianwan Huang, Xiahe Wang, Xin Jian, Youli Tang, Guihua Tang, Changyong Di, Yingtong Mu, Shuzhen Liu, Xuezhao Liu, Kai Li, Ting Wang, Yingchun Miao, Long Guo, Weixiang Hao, Xiaojiang Yang, Chonglin |
description | Lysosomes respond to environmental cues by controlling their own biogenesis, but the underlying mechanisms are poorly understood. Here we describe a protein kinase C (PKC)-dependent and mTORC1-independent mechanism for regulating lysosome biogenesis, which provides insights into previously reported effects of PKC on lysosomes. By identifying lysosome-inducing compounds we show that PKC couples activation of the TFEB transcription factor with inactivation of the ZKSCAN3 transcriptional repressor through two parallel signalling cascades. Activated PKC inactivates GSK3β, leading to reduced phosphorylation, nuclear translocation and activation of TFEB, while PKC activates JNK and p38 MAPK, which phosphorylate ZKSCAN3, leading to its inactivation by translocation out of the nucleus. PKC activation may therefore mediate lysosomal adaptation to many extracellular cues. PKC activators facilitate clearance of aggregated proteins and lipid droplets in cell models and ameliorate amyloid β plaque formation in APP/PS1 mouse brains. Thus, PKC activators are viable treatment options for lysosome-related disorders.
Using a chemical screening approach, Yang and colleagues identify PKC as a regulator of lysosome biogenesis, which controls the subcellular localization of TFEB and ZKSCAN3 through parallel signalling pathways and independently of mTORC1. |
doi_str_mv | 10.1038/ncb3407 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837307408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A632744333</galeid><sourcerecordid>A632744333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-44fd742212bd3d680f6a92cd533a6627630b4931383110e2921a9f46b22755123</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVpadJNyT8Ihh7aHpxoNLJkH8OStIFASj7OQrblxaktbTU2dP99tOymDTllDhqBnnk1My9jx8BPgWN55psaJdfv2CFIrXKpdPV-e1dFrrESB-wT0SPnIBP0kR0IrUBXyA_Zxa8YJtf77HfvLblsmTXBTzEMlA0bChRGl9V9WDnvqKes961bu3T4adhkocvG-5vbJRyxD50dyH3e5wV7uLy4X_7Mr29-XC3Pr_OmAJxyKbtWSyFA1C22quSdspVo2gLRKpWaQl7LCgFLBOBOVAJs1UlVC6GLAgQu2Led7jqGP7OjyYw9NW4YrHdhJgMlauRa8vINqCgEKEgFC_blFfoY5ujTIFtBQKE4V4n6vqNWdnCm99s9ub_Tys5E5uru1pwrFFpKTLFgX3dsEwNRdJ1Zx360cWOAm61hZm9YIk_2f8_16Np_3LND_-eg9ORXLr5o7pXWExmemQ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1831326006</pqid></control><display><type>article</type><title>Protein kinase C controls lysosome biogenesis independently of mTORC1</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Li, Yang ; Xu, Meng ; Ding, Xiao ; Yan, Chen ; Song, Zhiqin ; Chen, Lianwan ; Huang, Xiahe ; Wang, Xin ; Jian, Youli ; Tang, Guihua ; Tang, Changyong ; Di, Yingtong ; Mu, Shuzhen ; Liu, Xuezhao ; Liu, Kai ; Li, Ting ; Wang, Yingchun ; Miao, Long ; Guo, Weixiang ; Hao, Xiaojiang ; Yang, Chonglin</creator><creatorcontrib>Li, Yang ; Xu, Meng ; Ding, Xiao ; Yan, Chen ; Song, Zhiqin ; Chen, Lianwan ; Huang, Xiahe ; Wang, Xin ; Jian, Youli ; Tang, Guihua ; Tang, Changyong ; Di, Yingtong ; Mu, Shuzhen ; Liu, Xuezhao ; Liu, Kai ; Li, Ting ; Wang, Yingchun ; Miao, Long ; Guo, Weixiang ; Hao, Xiaojiang ; Yang, Chonglin</creatorcontrib><description>Lysosomes respond to environmental cues by controlling their own biogenesis, but the underlying mechanisms are poorly understood. Here we describe a protein kinase C (PKC)-dependent and mTORC1-independent mechanism for regulating lysosome biogenesis, which provides insights into previously reported effects of PKC on lysosomes. By identifying lysosome-inducing compounds we show that PKC couples activation of the TFEB transcription factor with inactivation of the ZKSCAN3 transcriptional repressor through two parallel signalling cascades. Activated PKC inactivates GSK3β, leading to reduced phosphorylation, nuclear translocation and activation of TFEB, while PKC activates JNK and p38 MAPK, which phosphorylate ZKSCAN3, leading to its inactivation by translocation out of the nucleus. PKC activation may therefore mediate lysosomal adaptation to many extracellular cues. PKC activators facilitate clearance of aggregated proteins and lipid droplets in cell models and ameliorate amyloid β plaque formation in APP/PS1 mouse brains. Thus, PKC activators are viable treatment options for lysosome-related disorders.
Using a chemical screening approach, Yang and colleagues identify PKC as a regulator of lysosome biogenesis, which controls the subcellular localization of TFEB and ZKSCAN3 through parallel signalling pathways and independently of mTORC1.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb3407</identifier><identifier>PMID: 27617930</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/106 ; 14/1 ; 14/19 ; 14/28 ; 14/34 ; 14/35 ; 38/109 ; 38/77 ; 38/88 ; 38/89 ; 38/90 ; 631/80/313 ; 631/80/642 ; 631/80/642/1624 ; 631/80/86 ; 82/58 ; 82/80 ; 82/83 ; 96/31 ; 96/44 ; 96/95 ; Animals ; Autophagy ; Biosynthesis ; Cancer Research ; Cell Biology ; Cell Nucleus - metabolism ; Cytological research ; Developmental Biology ; Inactivation ; Kinases ; Laboratories ; Life Sciences ; Lysosomes ; Lysosomes - metabolism ; Mechanistic Target of Rapamycin Complex 1 ; Metabolic Networks and Pathways ; Mice ; Multiprotein Complexes - metabolism ; p38 Mitogen-Activated Protein Kinases - metabolism ; Phosphorylation ; Physiological aspects ; Protein Kinase C - metabolism ; Protein kinases ; Protein Transport - physiology ; Proteins ; Stem Cells ; TOR Serine-Threonine Kinases - metabolism ; Transcription factors ; Transcription Factors - metabolism ; Translocation</subject><ispartof>Nature cell biology, 2016-10, Vol.18 (10), p.1065-1077</ispartof><rights>Springer Nature Limited 2016</rights><rights>COPYRIGHT 2016 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-44fd742212bd3d680f6a92cd533a6627630b4931383110e2921a9f46b22755123</citedby><cites>FETCH-LOGICAL-c513t-44fd742212bd3d680f6a92cd533a6627630b4931383110e2921a9f46b22755123</cites><orcidid>0000-0002-0562-6681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27617930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Xu, Meng</creatorcontrib><creatorcontrib>Ding, Xiao</creatorcontrib><creatorcontrib>Yan, Chen</creatorcontrib><creatorcontrib>Song, Zhiqin</creatorcontrib><creatorcontrib>Chen, Lianwan</creatorcontrib><creatorcontrib>Huang, Xiahe</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Jian, Youli</creatorcontrib><creatorcontrib>Tang, Guihua</creatorcontrib><creatorcontrib>Tang, Changyong</creatorcontrib><creatorcontrib>Di, Yingtong</creatorcontrib><creatorcontrib>Mu, Shuzhen</creatorcontrib><creatorcontrib>Liu, Xuezhao</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Li, Ting</creatorcontrib><creatorcontrib>Wang, Yingchun</creatorcontrib><creatorcontrib>Miao, Long</creatorcontrib><creatorcontrib>Guo, Weixiang</creatorcontrib><creatorcontrib>Hao, Xiaojiang</creatorcontrib><creatorcontrib>Yang, Chonglin</creatorcontrib><title>Protein kinase C controls lysosome biogenesis independently of mTORC1</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Lysosomes respond to environmental cues by controlling their own biogenesis, but the underlying mechanisms are poorly understood. Here we describe a protein kinase C (PKC)-dependent and mTORC1-independent mechanism for regulating lysosome biogenesis, which provides insights into previously reported effects of PKC on lysosomes. By identifying lysosome-inducing compounds we show that PKC couples activation of the TFEB transcription factor with inactivation of the ZKSCAN3 transcriptional repressor through two parallel signalling cascades. Activated PKC inactivates GSK3β, leading to reduced phosphorylation, nuclear translocation and activation of TFEB, while PKC activates JNK and p38 MAPK, which phosphorylate ZKSCAN3, leading to its inactivation by translocation out of the nucleus. PKC activation may therefore mediate lysosomal adaptation to many extracellular cues. PKC activators facilitate clearance of aggregated proteins and lipid droplets in cell models and ameliorate amyloid β plaque formation in APP/PS1 mouse brains. Thus, PKC activators are viable treatment options for lysosome-related disorders.
Using a chemical screening approach, Yang and colleagues identify PKC as a regulator of lysosome biogenesis, which controls the subcellular localization of TFEB and ZKSCAN3 through parallel signalling pathways and independently of mTORC1.</description><subject>13</subject><subject>13/106</subject><subject>14/1</subject><subject>14/19</subject><subject>14/28</subject><subject>14/34</subject><subject>14/35</subject><subject>38/109</subject><subject>38/77</subject><subject>38/88</subject><subject>38/89</subject><subject>38/90</subject><subject>631/80/313</subject><subject>631/80/642</subject><subject>631/80/642/1624</subject><subject>631/80/86</subject><subject>82/58</subject><subject>82/80</subject><subject>82/83</subject><subject>96/31</subject><subject>96/44</subject><subject>96/95</subject><subject>Animals</subject><subject>Autophagy</subject><subject>Biosynthesis</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell Nucleus - metabolism</subject><subject>Cytological research</subject><subject>Developmental Biology</subject><subject>Inactivation</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Life Sciences</subject><subject>Lysosomes</subject><subject>Lysosomes - metabolism</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Metabolic Networks and Pathways</subject><subject>Mice</subject><subject>Multiprotein Complexes - metabolism</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Protein Kinase C - metabolism</subject><subject>Protein kinases</subject><subject>Protein Transport - physiology</subject><subject>Proteins</subject><subject>Stem Cells</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><subject>Translocation</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1r3DAQhkVpadJNyT8Ihh7aHpxoNLJkH8OStIFASj7OQrblxaktbTU2dP99tOymDTllDhqBnnk1My9jx8BPgWN55psaJdfv2CFIrXKpdPV-e1dFrrESB-wT0SPnIBP0kR0IrUBXyA_Zxa8YJtf77HfvLblsmTXBTzEMlA0bChRGl9V9WDnvqKes961bu3T4adhkocvG-5vbJRyxD50dyH3e5wV7uLy4X_7Mr29-XC3Pr_OmAJxyKbtWSyFA1C22quSdspVo2gLRKpWaQl7LCgFLBOBOVAJs1UlVC6GLAgQu2Led7jqGP7OjyYw9NW4YrHdhJgMlauRa8vINqCgEKEgFC_blFfoY5ujTIFtBQKE4V4n6vqNWdnCm99s9ub_Tys5E5uru1pwrFFpKTLFgX3dsEwNRdJ1Zx360cWOAm61hZm9YIk_2f8_16Np_3LND_-eg9ORXLr5o7pXWExmemQ4</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Li, Yang</creator><creator>Xu, Meng</creator><creator>Ding, Xiao</creator><creator>Yan, Chen</creator><creator>Song, Zhiqin</creator><creator>Chen, Lianwan</creator><creator>Huang, Xiahe</creator><creator>Wang, Xin</creator><creator>Jian, Youli</creator><creator>Tang, Guihua</creator><creator>Tang, Changyong</creator><creator>Di, Yingtong</creator><creator>Mu, Shuzhen</creator><creator>Liu, Xuezhao</creator><creator>Liu, Kai</creator><creator>Li, Ting</creator><creator>Wang, Yingchun</creator><creator>Miao, Long</creator><creator>Guo, Weixiang</creator><creator>Hao, Xiaojiang</creator><creator>Yang, Chonglin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0562-6681</orcidid></search><sort><creationdate>20161001</creationdate><title>Protein kinase C controls lysosome biogenesis independently of mTORC1</title><author>Li, Yang ; Xu, Meng ; Ding, Xiao ; Yan, Chen ; Song, Zhiqin ; Chen, Lianwan ; Huang, Xiahe ; Wang, Xin ; Jian, Youli ; Tang, Guihua ; Tang, Changyong ; Di, Yingtong ; Mu, Shuzhen ; Liu, Xuezhao ; Liu, Kai ; Li, Ting ; Wang, Yingchun ; Miao, Long ; Guo, Weixiang ; Hao, Xiaojiang ; Yang, Chonglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-44fd742212bd3d680f6a92cd533a6627630b4931383110e2921a9f46b22755123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13</topic><topic>13/106</topic><topic>14/1</topic><topic>14/19</topic><topic>14/28</topic><topic>14/34</topic><topic>14/35</topic><topic>38/109</topic><topic>38/77</topic><topic>38/88</topic><topic>38/89</topic><topic>38/90</topic><topic>631/80/313</topic><topic>631/80/642</topic><topic>631/80/642/1624</topic><topic>631/80/86</topic><topic>82/58</topic><topic>82/80</topic><topic>82/83</topic><topic>96/31</topic><topic>96/44</topic><topic>96/95</topic><topic>Animals</topic><topic>Autophagy</topic><topic>Biosynthesis</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell Nucleus - metabolism</topic><topic>Cytological research</topic><topic>Developmental Biology</topic><topic>Inactivation</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Life Sciences</topic><topic>Lysosomes</topic><topic>Lysosomes - metabolism</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Metabolic Networks and Pathways</topic><topic>Mice</topic><topic>Multiprotein Complexes - metabolism</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Protein Kinase C - metabolism</topic><topic>Protein kinases</topic><topic>Protein Transport - physiology</topic><topic>Proteins</topic><topic>Stem Cells</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Xu, Meng</creatorcontrib><creatorcontrib>Ding, Xiao</creatorcontrib><creatorcontrib>Yan, Chen</creatorcontrib><creatorcontrib>Song, Zhiqin</creatorcontrib><creatorcontrib>Chen, Lianwan</creatorcontrib><creatorcontrib>Huang, Xiahe</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Jian, Youli</creatorcontrib><creatorcontrib>Tang, Guihua</creatorcontrib><creatorcontrib>Tang, Changyong</creatorcontrib><creatorcontrib>Di, Yingtong</creatorcontrib><creatorcontrib>Mu, Shuzhen</creatorcontrib><creatorcontrib>Liu, Xuezhao</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Li, Ting</creatorcontrib><creatorcontrib>Wang, Yingchun</creatorcontrib><creatorcontrib>Miao, Long</creatorcontrib><creatorcontrib>Guo, Weixiang</creatorcontrib><creatorcontrib>Hao, Xiaojiang</creatorcontrib><creatorcontrib>Yang, Chonglin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yang</au><au>Xu, Meng</au><au>Ding, Xiao</au><au>Yan, Chen</au><au>Song, Zhiqin</au><au>Chen, Lianwan</au><au>Huang, Xiahe</au><au>Wang, Xin</au><au>Jian, Youli</au><au>Tang, Guihua</au><au>Tang, Changyong</au><au>Di, Yingtong</au><au>Mu, Shuzhen</au><au>Liu, Xuezhao</au><au>Liu, Kai</au><au>Li, Ting</au><au>Wang, Yingchun</au><au>Miao, Long</au><au>Guo, Weixiang</au><au>Hao, Xiaojiang</au><au>Yang, Chonglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein kinase C controls lysosome biogenesis independently of mTORC1</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>18</volume><issue>10</issue><spage>1065</spage><epage>1077</epage><pages>1065-1077</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Lysosomes respond to environmental cues by controlling their own biogenesis, but the underlying mechanisms are poorly understood. Here we describe a protein kinase C (PKC)-dependent and mTORC1-independent mechanism for regulating lysosome biogenesis, which provides insights into previously reported effects of PKC on lysosomes. By identifying lysosome-inducing compounds we show that PKC couples activation of the TFEB transcription factor with inactivation of the ZKSCAN3 transcriptional repressor through two parallel signalling cascades. Activated PKC inactivates GSK3β, leading to reduced phosphorylation, nuclear translocation and activation of TFEB, while PKC activates JNK and p38 MAPK, which phosphorylate ZKSCAN3, leading to its inactivation by translocation out of the nucleus. PKC activation may therefore mediate lysosomal adaptation to many extracellular cues. PKC activators facilitate clearance of aggregated proteins and lipid droplets in cell models and ameliorate amyloid β plaque formation in APP/PS1 mouse brains. Thus, PKC activators are viable treatment options for lysosome-related disorders.
Using a chemical screening approach, Yang and colleagues identify PKC as a regulator of lysosome biogenesis, which controls the subcellular localization of TFEB and ZKSCAN3 through parallel signalling pathways and independently of mTORC1.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27617930</pmid><doi>10.1038/ncb3407</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0562-6681</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1465-7392 |
ispartof | Nature cell biology, 2016-10, Vol.18 (10), p.1065-1077 |
issn | 1465-7392 1476-4679 |
language | eng |
recordid | cdi_proquest_miscellaneous_1837307408 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | 13 13/106 14/1 14/19 14/28 14/34 14/35 38/109 38/77 38/88 38/89 38/90 631/80/313 631/80/642 631/80/642/1624 631/80/86 82/58 82/80 82/83 96/31 96/44 96/95 Animals Autophagy Biosynthesis Cancer Research Cell Biology Cell Nucleus - metabolism Cytological research Developmental Biology Inactivation Kinases Laboratories Life Sciences Lysosomes Lysosomes - metabolism Mechanistic Target of Rapamycin Complex 1 Metabolic Networks and Pathways Mice Multiprotein Complexes - metabolism p38 Mitogen-Activated Protein Kinases - metabolism Phosphorylation Physiological aspects Protein Kinase C - metabolism Protein kinases Protein Transport - physiology Proteins Stem Cells TOR Serine-Threonine Kinases - metabolism Transcription factors Transcription Factors - metabolism Translocation |
title | Protein kinase C controls lysosome biogenesis independently of mTORC1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T16%3A50%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20kinase%20C%20controls%20lysosome%20biogenesis%20independently%20of%20mTORC1&rft.jtitle=Nature%20cell%20biology&rft.au=Li,%20Yang&rft.date=2016-10-01&rft.volume=18&rft.issue=10&rft.spage=1065&rft.epage=1077&rft.pages=1065-1077&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb3407&rft_dat=%3Cgale_proqu%3EA632744333%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1831326006&rft_id=info:pmid/27617930&rft_galeid=A632744333&rfr_iscdi=true |