Dose calculation of different eye substructures using a realistic eye model when treating ocular tumors with electron therapy

One of the most frequent types of intraocular melanoma in adults is choroidal uveal melanoma. The most commonly used forms of radiation therapy are ophthalmic plaque brachytherapy and charged particle external radiation therapy. In the absence of adequate facilities for brachytherapy and proton ther...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radioprotection 2016-07, Vol.51 (3), p.179-186
Hauptverfasser: Vejdani-Noghreiyan, A., Ebrahimi-Khankook, A., Rahmani, E., Sakhaee, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186
container_issue 3
container_start_page 179
container_title Radioprotection
container_volume 51
creator Vejdani-Noghreiyan, A.
Ebrahimi-Khankook, A.
Rahmani, E.
Sakhaee, M.
description One of the most frequent types of intraocular melanoma in adults is choroidal uveal melanoma. The most commonly used forms of radiation therapy are ophthalmic plaque brachytherapy and charged particle external radiation therapy. In the absence of adequate facilities for brachytherapy and proton therapy, electron therapy would be an efficient radiation therapy technique for treating eye melanomas. In the present work, the Monte Carlo code MCNPX 2.6.0 was used to calculate the dose distribution to substructures of the eye in electron therapy of three common choroidal tumors. The simulations were performed for 6 electron beams with nominal energies between 5 MeV and 10 MeV and also for 10 incidence angles. To identify suitable treatment plans, the tumor-to-sensitive zone dose ratios were estimated. Moreover, the equivalent doses delivered to healthy substructures of the eye were also calculated. The results indicate that for the treatment of tumors located at the posterior part of the eye, an electron beam with energy of 10 MeV and incident angle of 45° relative to the eye axis provides the best tumor coverage while optimally sparing other eye substructures. In addition, for tumors positioned on the upper and lower parts of the vitreous, electron beams with energy of 10 MeV, an azimuthal angle of 270°, and polar incident angles of 90° and 105°, respectively, lead to appropriate dose delivery.
doi_str_mv 10.1051/radiopro/2016022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837305661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1837305661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-994255d4ad02d689afbf388bd978476bc0d685e498cf00216ca16c3de4bd83d03</originalsourceid><addsrcrecordid>eNo9kE1vEzEQhi0EEiFw5-gjl23H67XXe0QpLUhpe-HrZnntWeJ2sw62VyEH_nudJnAYjTTzvDPSQ8h7BhcMBLuMxvmwi-GyBiahrl-QBWtlV7UAP1-SBQDnlWoEe03epPQABeKCL8jfq5CQWjPaeTTZh4mGgTo_DBhxyhQPSNPcpxxnm-eIic7JT7-ooRHN6FP29pnZBocj3W9worls8pEJx5OR5nkbYqJ7nzcUR7Q5lid5g9HsDm_Jq8GMCd-d-5J8u_70dfW5Wt_ffFl9XFeWC5mrrmtqIVxjHNROqs4M_cCV6l3XqqaVvYUyFdh0yg4ANZPWlOIOm94p7oAvyYfT3SLo94wp661PFsfRTBjmpJniLQchJSsonFAbQ0oRB72LfmviQTPQR9P6n2l9Nl0i1SlSfOCf_7yJj1q2vBVawQ9dt7xer26_6zv-BKvFhb4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837305661</pqid></control><display><type>article</type><title>Dose calculation of different eye substructures using a realistic eye model when treating ocular tumors with electron therapy</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Vejdani-Noghreiyan, A. ; Ebrahimi-Khankook, A. ; Rahmani, E. ; Sakhaee, M.</creator><creatorcontrib>Vejdani-Noghreiyan, A. ; Ebrahimi-Khankook, A. ; Rahmani, E. ; Sakhaee, M.</creatorcontrib><description>One of the most frequent types of intraocular melanoma in adults is choroidal uveal melanoma. The most commonly used forms of radiation therapy are ophthalmic plaque brachytherapy and charged particle external radiation therapy. In the absence of adequate facilities for brachytherapy and proton therapy, electron therapy would be an efficient radiation therapy technique for treating eye melanomas. In the present work, the Monte Carlo code MCNPX 2.6.0 was used to calculate the dose distribution to substructures of the eye in electron therapy of three common choroidal tumors. The simulations were performed for 6 electron beams with nominal energies between 5 MeV and 10 MeV and also for 10 incidence angles. To identify suitable treatment plans, the tumor-to-sensitive zone dose ratios were estimated. Moreover, the equivalent doses delivered to healthy substructures of the eye were also calculated. The results indicate that for the treatment of tumors located at the posterior part of the eye, an electron beam with energy of 10 MeV and incident angle of 45° relative to the eye axis provides the best tumor coverage while optimally sparing other eye substructures. In addition, for tumors positioned on the upper and lower parts of the vitreous, electron beams with energy of 10 MeV, an azimuthal angle of 270°, and polar incident angles of 90° and 105°, respectively, lead to appropriate dose delivery.</description><identifier>ISSN: 0033-8451</identifier><identifier>EISSN: 1769-700X</identifier><identifier>DOI: 10.1051/radiopro/2016022</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>electron beam ; eye melanoma ; Monte Carlo simulation ; realistic eye model</subject><ispartof>Radioprotection, 2016-07, Vol.51 (3), p.179-186</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-994255d4ad02d689afbf388bd978476bc0d685e498cf00216ca16c3de4bd83d03</citedby><cites>FETCH-LOGICAL-c356t-994255d4ad02d689afbf388bd978476bc0d685e498cf00216ca16c3de4bd83d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Vejdani-Noghreiyan, A.</creatorcontrib><creatorcontrib>Ebrahimi-Khankook, A.</creatorcontrib><creatorcontrib>Rahmani, E.</creatorcontrib><creatorcontrib>Sakhaee, M.</creatorcontrib><title>Dose calculation of different eye substructures using a realistic eye model when treating ocular tumors with electron therapy</title><title>Radioprotection</title><description>One of the most frequent types of intraocular melanoma in adults is choroidal uveal melanoma. The most commonly used forms of radiation therapy are ophthalmic plaque brachytherapy and charged particle external radiation therapy. In the absence of adequate facilities for brachytherapy and proton therapy, electron therapy would be an efficient radiation therapy technique for treating eye melanomas. In the present work, the Monte Carlo code MCNPX 2.6.0 was used to calculate the dose distribution to substructures of the eye in electron therapy of three common choroidal tumors. The simulations were performed for 6 electron beams with nominal energies between 5 MeV and 10 MeV and also for 10 incidence angles. To identify suitable treatment plans, the tumor-to-sensitive zone dose ratios were estimated. Moreover, the equivalent doses delivered to healthy substructures of the eye were also calculated. The results indicate that for the treatment of tumors located at the posterior part of the eye, an electron beam with energy of 10 MeV and incident angle of 45° relative to the eye axis provides the best tumor coverage while optimally sparing other eye substructures. In addition, for tumors positioned on the upper and lower parts of the vitreous, electron beams with energy of 10 MeV, an azimuthal angle of 270°, and polar incident angles of 90° and 105°, respectively, lead to appropriate dose delivery.</description><subject>electron beam</subject><subject>eye melanoma</subject><subject>Monte Carlo simulation</subject><subject>realistic eye model</subject><issn>0033-8451</issn><issn>1769-700X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kE1vEzEQhi0EEiFw5-gjl23H67XXe0QpLUhpe-HrZnntWeJ2sw62VyEH_nudJnAYjTTzvDPSQ8h7BhcMBLuMxvmwi-GyBiahrl-QBWtlV7UAP1-SBQDnlWoEe03epPQABeKCL8jfq5CQWjPaeTTZh4mGgTo_DBhxyhQPSNPcpxxnm-eIic7JT7-ooRHN6FP29pnZBocj3W9worls8pEJx5OR5nkbYqJ7nzcUR7Q5lid5g9HsDm_Jq8GMCd-d-5J8u_70dfW5Wt_ffFl9XFeWC5mrrmtqIVxjHNROqs4M_cCV6l3XqqaVvYUyFdh0yg4ANZPWlOIOm94p7oAvyYfT3SLo94wp661PFsfRTBjmpJniLQchJSsonFAbQ0oRB72LfmviQTPQR9P6n2l9Nl0i1SlSfOCf_7yJj1q2vBVawQ9dt7xer26_6zv-BKvFhb4</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Vejdani-Noghreiyan, A.</creator><creator>Ebrahimi-Khankook, A.</creator><creator>Rahmani, E.</creator><creator>Sakhaee, M.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20160701</creationdate><title>Dose calculation of different eye substructures using a realistic eye model when treating ocular tumors with electron therapy</title><author>Vejdani-Noghreiyan, A. ; Ebrahimi-Khankook, A. ; Rahmani, E. ; Sakhaee, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-994255d4ad02d689afbf388bd978476bc0d685e498cf00216ca16c3de4bd83d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>electron beam</topic><topic>eye melanoma</topic><topic>Monte Carlo simulation</topic><topic>realistic eye model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vejdani-Noghreiyan, A.</creatorcontrib><creatorcontrib>Ebrahimi-Khankook, A.</creatorcontrib><creatorcontrib>Rahmani, E.</creatorcontrib><creatorcontrib>Sakhaee, M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Radioprotection</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vejdani-Noghreiyan, A.</au><au>Ebrahimi-Khankook, A.</au><au>Rahmani, E.</au><au>Sakhaee, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dose calculation of different eye substructures using a realistic eye model when treating ocular tumors with electron therapy</atitle><jtitle>Radioprotection</jtitle><date>2016-07-01</date><risdate>2016</risdate><volume>51</volume><issue>3</issue><spage>179</spage><epage>186</epage><pages>179-186</pages><issn>0033-8451</issn><eissn>1769-700X</eissn><abstract>One of the most frequent types of intraocular melanoma in adults is choroidal uveal melanoma. The most commonly used forms of radiation therapy are ophthalmic plaque brachytherapy and charged particle external radiation therapy. In the absence of adequate facilities for brachytherapy and proton therapy, electron therapy would be an efficient radiation therapy technique for treating eye melanomas. In the present work, the Monte Carlo code MCNPX 2.6.0 was used to calculate the dose distribution to substructures of the eye in electron therapy of three common choroidal tumors. The simulations were performed for 6 electron beams with nominal energies between 5 MeV and 10 MeV and also for 10 incidence angles. To identify suitable treatment plans, the tumor-to-sensitive zone dose ratios were estimated. Moreover, the equivalent doses delivered to healthy substructures of the eye were also calculated. The results indicate that for the treatment of tumors located at the posterior part of the eye, an electron beam with energy of 10 MeV and incident angle of 45° relative to the eye axis provides the best tumor coverage while optimally sparing other eye substructures. In addition, for tumors positioned on the upper and lower parts of the vitreous, electron beams with energy of 10 MeV, an azimuthal angle of 270°, and polar incident angles of 90° and 105°, respectively, lead to appropriate dose delivery.</abstract><pub>EDP Sciences</pub><doi>10.1051/radiopro/2016022</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0033-8451
ispartof Radioprotection, 2016-07, Vol.51 (3), p.179-186
issn 0033-8451
1769-700X
language eng
recordid cdi_proquest_miscellaneous_1837305661
source EZB-FREE-00999 freely available EZB journals
subjects electron beam
eye melanoma
Monte Carlo simulation
realistic eye model
title Dose calculation of different eye substructures using a realistic eye model when treating ocular tumors with electron therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A59%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dose%20calculation%20of%20different%20eye%20substructures%20using%20a%20realistic%20eye%20model%20when%20treating%20ocular%20tumors%20with%20electron%20therapy&rft.jtitle=Radioprotection&rft.au=Vejdani-Noghreiyan,%20A.&rft.date=2016-07-01&rft.volume=51&rft.issue=3&rft.spage=179&rft.epage=186&rft.pages=179-186&rft.issn=0033-8451&rft.eissn=1769-700X&rft_id=info:doi/10.1051/radiopro/2016022&rft_dat=%3Cproquest_cross%3E1837305661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1837305661&rft_id=info:pmid/&rfr_iscdi=true