Contractile properties of motor units and expression of myosin heavy chain isoforms in rat fast-type muscle after volitional weight-lifting training

Dynamic resistance training increases the force and speed of muscle contraction, but little is known about modifications to the contractile properties of the main physiological types of motor units (MUs) that contribute to these muscle adaptations. Although the contractile profile of MU muscle fiber...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physiology (1985) 2016-10, Vol.121 (4), p.858-869
Hauptverfasser: Łochyński, Dawid, Kaczmarek, Dominik, Mrówczyński, Włodzimierz, Warchoł, Wojciech, Majerczak, Joanna, Karasiński, Janusz, Korostyński, Michał, Zoladz, Jerzy A, Celichowski, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 869
container_issue 4
container_start_page 858
container_title Journal of applied physiology (1985)
container_volume 121
creator Łochyński, Dawid
Kaczmarek, Dominik
Mrówczyński, Włodzimierz
Warchoł, Wojciech
Majerczak, Joanna
Karasiński, Janusz
Korostyński, Michał
Zoladz, Jerzy A
Celichowski, Jan
description Dynamic resistance training increases the force and speed of muscle contraction, but little is known about modifications to the contractile properties of the main physiological types of motor units (MUs) that contribute to these muscle adaptations. Although the contractile profile of MU muscle fibers is tightly coupled to myosin heavy chain (MyHC) protein expression, it is not well understood if MyHC transition is a prerequisite for modifications to the contractile characteristics of MUs. In this study, we examined MU contractile properties, the mRNA expression of MyHC, parvalbumin, and sarcoendoplasmic reticulum Ca pump isoforms, as well as the MyHC protein content after 5 wk of volitional progressive weight-lifting training in the medial gastrocnemius muscle in rats. The training had no effect on MyHC profiling or Ca -handling protein gene expression. Maximum force increased in slow (by 49%) and fast (by 21%) MUs. Within fast MUs, the maximum force increased in most fatigue-resistant and intermediate but not most fatigable MUs. Twitch contraction time was shortened in slow and fast fatigue-resistant MUs. Twitch half-relaxation was shortened in fast most fatigue-resistant and intermediate MUs. The force-frequency curve shifted rightward in fast fatigue-resistant MUs. Fast fatigable MUs fatigued less within the initial 15 s while fast fatigue-resistant units increased the ability to potentiate the force within the first minute of the standard fatigue test. In conclusion, at the early stage of resistance training, modifications to the contractile characteristics of MUs appear in the absence of MyHC transition and the upregulation of Ca -handling genes.
doi_str_mv 10.1152/japplphysiol.00330.2016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837296896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1837296896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-5e2e09f05c0c56a649f757d4cd51ee795f233aaaa3e8a8b7bf3c8c37428eb0663</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EotPCK4AlNmwy-Dd2ltWopZUqsYF15PFcdzxy4mA7bfMefWA8bUGIFd74SPfc7_r6IPSRkjWlkn05mGkK037JPoY1IZyTNSO0fYVWtcoa2hL6Gq20kqRRUqsTdJrzgRAqhKRv0QlTkneikyv0uIljScYWHwBPKU6QioeMo8NDLDHhefQlYzPuMDxMCXKdOD5Vl5j9iPdg7hZs96Zqn6OLaci46mQKdiaXpiwT4GHOtvKNK5DwXQy-VIoJ-B787b40wbvix1tcH-LHKt6hN86EDO9f7jP04_Li--aqufn29XpzftNYobvSSGBAOkekJVa2phWdU1LthN1JCqA66Rjnph4O2uit2jputeVKMA1b0rb8DH1-5tbFf86QSz_4bCEEM0Kcc081V6xrdfdfVsk1r39arZ_-sR7inOq6RxdTgmoqjkD17LIp5pzA9VPyg0lLT0l_zLj_O-P-KeP-mHHt_PDCn7cD7P70_Q6V_wJs_Kok</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1827418146</pqid></control><display><type>article</type><title>Contractile properties of motor units and expression of myosin heavy chain isoforms in rat fast-type muscle after volitional weight-lifting training</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Łochyński, Dawid ; Kaczmarek, Dominik ; Mrówczyński, Włodzimierz ; Warchoł, Wojciech ; Majerczak, Joanna ; Karasiński, Janusz ; Korostyński, Michał ; Zoladz, Jerzy A ; Celichowski, Jan</creator><creatorcontrib>Łochyński, Dawid ; Kaczmarek, Dominik ; Mrówczyński, Włodzimierz ; Warchoł, Wojciech ; Majerczak, Joanna ; Karasiński, Janusz ; Korostyński, Michał ; Zoladz, Jerzy A ; Celichowski, Jan</creatorcontrib><description>Dynamic resistance training increases the force and speed of muscle contraction, but little is known about modifications to the contractile properties of the main physiological types of motor units (MUs) that contribute to these muscle adaptations. Although the contractile profile of MU muscle fibers is tightly coupled to myosin heavy chain (MyHC) protein expression, it is not well understood if MyHC transition is a prerequisite for modifications to the contractile characteristics of MUs. In this study, we examined MU contractile properties, the mRNA expression of MyHC, parvalbumin, and sarcoendoplasmic reticulum Ca pump isoforms, as well as the MyHC protein content after 5 wk of volitional progressive weight-lifting training in the medial gastrocnemius muscle in rats. The training had no effect on MyHC profiling or Ca -handling protein gene expression. Maximum force increased in slow (by 49%) and fast (by 21%) MUs. Within fast MUs, the maximum force increased in most fatigue-resistant and intermediate but not most fatigable MUs. Twitch contraction time was shortened in slow and fast fatigue-resistant MUs. Twitch half-relaxation was shortened in fast most fatigue-resistant and intermediate MUs. The force-frequency curve shifted rightward in fast fatigue-resistant MUs. Fast fatigable MUs fatigued less within the initial 15 s while fast fatigue-resistant units increased the ability to potentiate the force within the first minute of the standard fatigue test. In conclusion, at the early stage of resistance training, modifications to the contractile characteristics of MUs appear in the absence of MyHC transition and the upregulation of Ca -handling genes.</description><identifier>ISSN: 8750-7587</identifier><identifier>EISSN: 1522-1601</identifier><identifier>DOI: 10.1152/japplphysiol.00330.2016</identifier><identifier>PMID: 27539495</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Adaptation, Physiological - physiology ; Animals ; Calcium Signaling - physiology ; Endoplasmic reticulum ; Exercise ; Gene expression ; Gene Expression Regulation - physiology ; Male ; Motor Neurons - physiology ; Muscle Contraction - physiology ; Muscle Fatigue - physiology ; Muscle Fibers, Fast-Twitch - physiology ; Muscle, Skeletal - cytology ; Muscle, Skeletal - physiology ; Myosin Heavy Chains - metabolism ; Physical Conditioning, Animal - methods ; Proteins ; Rats ; Rats, Wistar ; Resistance Training - methods ; Ribonucleic acid ; RNA ; Rodents ; Volition - physiology</subject><ispartof>Journal of applied physiology (1985), 2016-10, Vol.121 (4), p.858-869</ispartof><rights>Copyright © 2016 the American Physiological Society.</rights><rights>Copyright American Physiological Society Oct 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-5e2e09f05c0c56a649f757d4cd51ee795f233aaaa3e8a8b7bf3c8c37428eb0663</citedby><cites>FETCH-LOGICAL-c489t-5e2e09f05c0c56a649f757d4cd51ee795f233aaaa3e8a8b7bf3c8c37428eb0663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3025,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27539495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Łochyński, Dawid</creatorcontrib><creatorcontrib>Kaczmarek, Dominik</creatorcontrib><creatorcontrib>Mrówczyński, Włodzimierz</creatorcontrib><creatorcontrib>Warchoł, Wojciech</creatorcontrib><creatorcontrib>Majerczak, Joanna</creatorcontrib><creatorcontrib>Karasiński, Janusz</creatorcontrib><creatorcontrib>Korostyński, Michał</creatorcontrib><creatorcontrib>Zoladz, Jerzy A</creatorcontrib><creatorcontrib>Celichowski, Jan</creatorcontrib><title>Contractile properties of motor units and expression of myosin heavy chain isoforms in rat fast-type muscle after volitional weight-lifting training</title><title>Journal of applied physiology (1985)</title><addtitle>J Appl Physiol (1985)</addtitle><description>Dynamic resistance training increases the force and speed of muscle contraction, but little is known about modifications to the contractile properties of the main physiological types of motor units (MUs) that contribute to these muscle adaptations. Although the contractile profile of MU muscle fibers is tightly coupled to myosin heavy chain (MyHC) protein expression, it is not well understood if MyHC transition is a prerequisite for modifications to the contractile characteristics of MUs. In this study, we examined MU contractile properties, the mRNA expression of MyHC, parvalbumin, and sarcoendoplasmic reticulum Ca pump isoforms, as well as the MyHC protein content after 5 wk of volitional progressive weight-lifting training in the medial gastrocnemius muscle in rats. The training had no effect on MyHC profiling or Ca -handling protein gene expression. Maximum force increased in slow (by 49%) and fast (by 21%) MUs. Within fast MUs, the maximum force increased in most fatigue-resistant and intermediate but not most fatigable MUs. Twitch contraction time was shortened in slow and fast fatigue-resistant MUs. Twitch half-relaxation was shortened in fast most fatigue-resistant and intermediate MUs. The force-frequency curve shifted rightward in fast fatigue-resistant MUs. Fast fatigable MUs fatigued less within the initial 15 s while fast fatigue-resistant units increased the ability to potentiate the force within the first minute of the standard fatigue test. In conclusion, at the early stage of resistance training, modifications to the contractile characteristics of MUs appear in the absence of MyHC transition and the upregulation of Ca -handling genes.</description><subject>Adaptation, Physiological - physiology</subject><subject>Animals</subject><subject>Calcium Signaling - physiology</subject><subject>Endoplasmic reticulum</subject><subject>Exercise</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - physiology</subject><subject>Male</subject><subject>Motor Neurons - physiology</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle Fatigue - physiology</subject><subject>Muscle Fibers, Fast-Twitch - physiology</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - physiology</subject><subject>Myosin Heavy Chains - metabolism</subject><subject>Physical Conditioning, Animal - methods</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Resistance Training - methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Rodents</subject><subject>Volition - physiology</subject><issn>8750-7587</issn><issn>1522-1601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS0EotPCK4AlNmwy-Dd2ltWopZUqsYF15PFcdzxy4mA7bfMefWA8bUGIFd74SPfc7_r6IPSRkjWlkn05mGkK037JPoY1IZyTNSO0fYVWtcoa2hL6Gq20kqRRUqsTdJrzgRAqhKRv0QlTkneikyv0uIljScYWHwBPKU6QioeMo8NDLDHhefQlYzPuMDxMCXKdOD5Vl5j9iPdg7hZs96Zqn6OLaci46mQKdiaXpiwT4GHOtvKNK5DwXQy-VIoJ-B787b40wbvix1tcH-LHKt6hN86EDO9f7jP04_Li--aqufn29XpzftNYobvSSGBAOkekJVa2phWdU1LthN1JCqA66Rjnph4O2uit2jputeVKMA1b0rb8DH1-5tbFf86QSz_4bCEEM0Kcc081V6xrdfdfVsk1r39arZ_-sR7inOq6RxdTgmoqjkD17LIp5pzA9VPyg0lLT0l_zLj_O-P-KeP-mHHt_PDCn7cD7P70_Q6V_wJs_Kok</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Łochyński, Dawid</creator><creator>Kaczmarek, Dominik</creator><creator>Mrówczyński, Włodzimierz</creator><creator>Warchoł, Wojciech</creator><creator>Majerczak, Joanna</creator><creator>Karasiński, Janusz</creator><creator>Korostyński, Michał</creator><creator>Zoladz, Jerzy A</creator><creator>Celichowski, Jan</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20161001</creationdate><title>Contractile properties of motor units and expression of myosin heavy chain isoforms in rat fast-type muscle after volitional weight-lifting training</title><author>Łochyński, Dawid ; Kaczmarek, Dominik ; Mrówczyński, Włodzimierz ; Warchoł, Wojciech ; Majerczak, Joanna ; Karasiński, Janusz ; Korostyński, Michał ; Zoladz, Jerzy A ; Celichowski, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-5e2e09f05c0c56a649f757d4cd51ee795f233aaaa3e8a8b7bf3c8c37428eb0663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation, Physiological - physiology</topic><topic>Animals</topic><topic>Calcium Signaling - physiology</topic><topic>Endoplasmic reticulum</topic><topic>Exercise</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - physiology</topic><topic>Male</topic><topic>Motor Neurons - physiology</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle Fatigue - physiology</topic><topic>Muscle Fibers, Fast-Twitch - physiology</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - physiology</topic><topic>Myosin Heavy Chains - metabolism</topic><topic>Physical Conditioning, Animal - methods</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Resistance Training - methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Rodents</topic><topic>Volition - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Łochyński, Dawid</creatorcontrib><creatorcontrib>Kaczmarek, Dominik</creatorcontrib><creatorcontrib>Mrówczyński, Włodzimierz</creatorcontrib><creatorcontrib>Warchoł, Wojciech</creatorcontrib><creatorcontrib>Majerczak, Joanna</creatorcontrib><creatorcontrib>Karasiński, Janusz</creatorcontrib><creatorcontrib>Korostyński, Michał</creatorcontrib><creatorcontrib>Zoladz, Jerzy A</creatorcontrib><creatorcontrib>Celichowski, Jan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Journal of applied physiology (1985)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Łochyński, Dawid</au><au>Kaczmarek, Dominik</au><au>Mrówczyński, Włodzimierz</au><au>Warchoł, Wojciech</au><au>Majerczak, Joanna</au><au>Karasiński, Janusz</au><au>Korostyński, Michał</au><au>Zoladz, Jerzy A</au><au>Celichowski, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contractile properties of motor units and expression of myosin heavy chain isoforms in rat fast-type muscle after volitional weight-lifting training</atitle><jtitle>Journal of applied physiology (1985)</jtitle><addtitle>J Appl Physiol (1985)</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>121</volume><issue>4</issue><spage>858</spage><epage>869</epage><pages>858-869</pages><issn>8750-7587</issn><eissn>1522-1601</eissn><abstract>Dynamic resistance training increases the force and speed of muscle contraction, but little is known about modifications to the contractile properties of the main physiological types of motor units (MUs) that contribute to these muscle adaptations. Although the contractile profile of MU muscle fibers is tightly coupled to myosin heavy chain (MyHC) protein expression, it is not well understood if MyHC transition is a prerequisite for modifications to the contractile characteristics of MUs. In this study, we examined MU contractile properties, the mRNA expression of MyHC, parvalbumin, and sarcoendoplasmic reticulum Ca pump isoforms, as well as the MyHC protein content after 5 wk of volitional progressive weight-lifting training in the medial gastrocnemius muscle in rats. The training had no effect on MyHC profiling or Ca -handling protein gene expression. Maximum force increased in slow (by 49%) and fast (by 21%) MUs. Within fast MUs, the maximum force increased in most fatigue-resistant and intermediate but not most fatigable MUs. Twitch contraction time was shortened in slow and fast fatigue-resistant MUs. Twitch half-relaxation was shortened in fast most fatigue-resistant and intermediate MUs. The force-frequency curve shifted rightward in fast fatigue-resistant MUs. Fast fatigable MUs fatigued less within the initial 15 s while fast fatigue-resistant units increased the ability to potentiate the force within the first minute of the standard fatigue test. In conclusion, at the early stage of resistance training, modifications to the contractile characteristics of MUs appear in the absence of MyHC transition and the upregulation of Ca -handling genes.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>27539495</pmid><doi>10.1152/japplphysiol.00330.2016</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 8750-7587
ispartof Journal of applied physiology (1985), 2016-10, Vol.121 (4), p.858-869
issn 8750-7587
1522-1601
language eng
recordid cdi_proquest_miscellaneous_1837296896
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Adaptation, Physiological - physiology
Animals
Calcium Signaling - physiology
Endoplasmic reticulum
Exercise
Gene expression
Gene Expression Regulation - physiology
Male
Motor Neurons - physiology
Muscle Contraction - physiology
Muscle Fatigue - physiology
Muscle Fibers, Fast-Twitch - physiology
Muscle, Skeletal - cytology
Muscle, Skeletal - physiology
Myosin Heavy Chains - metabolism
Physical Conditioning, Animal - methods
Proteins
Rats
Rats, Wistar
Resistance Training - methods
Ribonucleic acid
RNA
Rodents
Volition - physiology
title Contractile properties of motor units and expression of myosin heavy chain isoforms in rat fast-type muscle after volitional weight-lifting training
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contractile%20properties%20of%20motor%20units%20and%20expression%20of%20myosin%20heavy%20chain%20isoforms%20in%20rat%20fast-type%20muscle%20after%20volitional%20weight-lifting%20training&rft.jtitle=Journal%20of%20applied%20physiology%20(1985)&rft.au=%C5%81ochy%C5%84ski,%20Dawid&rft.date=2016-10-01&rft.volume=121&rft.issue=4&rft.spage=858&rft.epage=869&rft.pages=858-869&rft.issn=8750-7587&rft.eissn=1522-1601&rft_id=info:doi/10.1152/japplphysiol.00330.2016&rft_dat=%3Cproquest_cross%3E1837296896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1827418146&rft_id=info:pmid/27539495&rfr_iscdi=true