Contractile properties of motor units and expression of myosin heavy chain isoforms in rat fast-type muscle after volitional weight-lifting training
Dynamic resistance training increases the force and speed of muscle contraction, but little is known about modifications to the contractile properties of the main physiological types of motor units (MUs) that contribute to these muscle adaptations. Although the contractile profile of MU muscle fiber...
Gespeichert in:
Veröffentlicht in: | Journal of applied physiology (1985) 2016-10, Vol.121 (4), p.858-869 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 869 |
---|---|
container_issue | 4 |
container_start_page | 858 |
container_title | Journal of applied physiology (1985) |
container_volume | 121 |
creator | Łochyński, Dawid Kaczmarek, Dominik Mrówczyński, Włodzimierz Warchoł, Wojciech Majerczak, Joanna Karasiński, Janusz Korostyński, Michał Zoladz, Jerzy A Celichowski, Jan |
description | Dynamic resistance training increases the force and speed of muscle contraction, but little is known about modifications to the contractile properties of the main physiological types of motor units (MUs) that contribute to these muscle adaptations. Although the contractile profile of MU muscle fibers is tightly coupled to myosin heavy chain (MyHC) protein expression, it is not well understood if MyHC transition is a prerequisite for modifications to the contractile characteristics of MUs. In this study, we examined MU contractile properties, the mRNA expression of MyHC, parvalbumin, and sarcoendoplasmic reticulum Ca
pump isoforms, as well as the MyHC protein content after 5 wk of volitional progressive weight-lifting training in the medial gastrocnemius muscle in rats. The training had no effect on MyHC profiling or Ca
-handling protein gene expression. Maximum force increased in slow (by 49%) and fast (by 21%) MUs. Within fast MUs, the maximum force increased in most fatigue-resistant and intermediate but not most fatigable MUs. Twitch contraction time was shortened in slow and fast fatigue-resistant MUs. Twitch half-relaxation was shortened in fast most fatigue-resistant and intermediate MUs. The force-frequency curve shifted rightward in fast fatigue-resistant MUs. Fast fatigable MUs fatigued less within the initial 15 s while fast fatigue-resistant units increased the ability to potentiate the force within the first minute of the standard fatigue test. In conclusion, at the early stage of resistance training, modifications to the contractile characteristics of MUs appear in the absence of MyHC transition and the upregulation of Ca
-handling genes. |
doi_str_mv | 10.1152/japplphysiol.00330.2016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837296896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1837296896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-5e2e09f05c0c56a649f757d4cd51ee795f233aaaa3e8a8b7bf3c8c37428eb0663</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EotPCK4AlNmwy-Dd2ltWopZUqsYF15PFcdzxy4mA7bfMefWA8bUGIFd74SPfc7_r6IPSRkjWlkn05mGkK037JPoY1IZyTNSO0fYVWtcoa2hL6Gq20kqRRUqsTdJrzgRAqhKRv0QlTkneikyv0uIljScYWHwBPKU6QioeMo8NDLDHhefQlYzPuMDxMCXKdOD5Vl5j9iPdg7hZs96Zqn6OLaci46mQKdiaXpiwT4GHOtvKNK5DwXQy-VIoJ-B787b40wbvix1tcH-LHKt6hN86EDO9f7jP04_Li--aqufn29XpzftNYobvSSGBAOkekJVa2phWdU1LthN1JCqA66Rjnph4O2uit2jputeVKMA1b0rb8DH1-5tbFf86QSz_4bCEEM0Kcc081V6xrdfdfVsk1r39arZ_-sR7inOq6RxdTgmoqjkD17LIp5pzA9VPyg0lLT0l_zLj_O-P-KeP-mHHt_PDCn7cD7P70_Q6V_wJs_Kok</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1827418146</pqid></control><display><type>article</type><title>Contractile properties of motor units and expression of myosin heavy chain isoforms in rat fast-type muscle after volitional weight-lifting training</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Łochyński, Dawid ; Kaczmarek, Dominik ; Mrówczyński, Włodzimierz ; Warchoł, Wojciech ; Majerczak, Joanna ; Karasiński, Janusz ; Korostyński, Michał ; Zoladz, Jerzy A ; Celichowski, Jan</creator><creatorcontrib>Łochyński, Dawid ; Kaczmarek, Dominik ; Mrówczyński, Włodzimierz ; Warchoł, Wojciech ; Majerczak, Joanna ; Karasiński, Janusz ; Korostyński, Michał ; Zoladz, Jerzy A ; Celichowski, Jan</creatorcontrib><description>Dynamic resistance training increases the force and speed of muscle contraction, but little is known about modifications to the contractile properties of the main physiological types of motor units (MUs) that contribute to these muscle adaptations. Although the contractile profile of MU muscle fibers is tightly coupled to myosin heavy chain (MyHC) protein expression, it is not well understood if MyHC transition is a prerequisite for modifications to the contractile characteristics of MUs. In this study, we examined MU contractile properties, the mRNA expression of MyHC, parvalbumin, and sarcoendoplasmic reticulum Ca
pump isoforms, as well as the MyHC protein content after 5 wk of volitional progressive weight-lifting training in the medial gastrocnemius muscle in rats. The training had no effect on MyHC profiling or Ca
-handling protein gene expression. Maximum force increased in slow (by 49%) and fast (by 21%) MUs. Within fast MUs, the maximum force increased in most fatigue-resistant and intermediate but not most fatigable MUs. Twitch contraction time was shortened in slow and fast fatigue-resistant MUs. Twitch half-relaxation was shortened in fast most fatigue-resistant and intermediate MUs. The force-frequency curve shifted rightward in fast fatigue-resistant MUs. Fast fatigable MUs fatigued less within the initial 15 s while fast fatigue-resistant units increased the ability to potentiate the force within the first minute of the standard fatigue test. In conclusion, at the early stage of resistance training, modifications to the contractile characteristics of MUs appear in the absence of MyHC transition and the upregulation of Ca
-handling genes.</description><identifier>ISSN: 8750-7587</identifier><identifier>EISSN: 1522-1601</identifier><identifier>DOI: 10.1152/japplphysiol.00330.2016</identifier><identifier>PMID: 27539495</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Adaptation, Physiological - physiology ; Animals ; Calcium Signaling - physiology ; Endoplasmic reticulum ; Exercise ; Gene expression ; Gene Expression Regulation - physiology ; Male ; Motor Neurons - physiology ; Muscle Contraction - physiology ; Muscle Fatigue - physiology ; Muscle Fibers, Fast-Twitch - physiology ; Muscle, Skeletal - cytology ; Muscle, Skeletal - physiology ; Myosin Heavy Chains - metabolism ; Physical Conditioning, Animal - methods ; Proteins ; Rats ; Rats, Wistar ; Resistance Training - methods ; Ribonucleic acid ; RNA ; Rodents ; Volition - physiology</subject><ispartof>Journal of applied physiology (1985), 2016-10, Vol.121 (4), p.858-869</ispartof><rights>Copyright © 2016 the American Physiological Society.</rights><rights>Copyright American Physiological Society Oct 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-5e2e09f05c0c56a649f757d4cd51ee795f233aaaa3e8a8b7bf3c8c37428eb0663</citedby><cites>FETCH-LOGICAL-c489t-5e2e09f05c0c56a649f757d4cd51ee795f233aaaa3e8a8b7bf3c8c37428eb0663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3025,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27539495$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Łochyński, Dawid</creatorcontrib><creatorcontrib>Kaczmarek, Dominik</creatorcontrib><creatorcontrib>Mrówczyński, Włodzimierz</creatorcontrib><creatorcontrib>Warchoł, Wojciech</creatorcontrib><creatorcontrib>Majerczak, Joanna</creatorcontrib><creatorcontrib>Karasiński, Janusz</creatorcontrib><creatorcontrib>Korostyński, Michał</creatorcontrib><creatorcontrib>Zoladz, Jerzy A</creatorcontrib><creatorcontrib>Celichowski, Jan</creatorcontrib><title>Contractile properties of motor units and expression of myosin heavy chain isoforms in rat fast-type muscle after volitional weight-lifting training</title><title>Journal of applied physiology (1985)</title><addtitle>J Appl Physiol (1985)</addtitle><description>Dynamic resistance training increases the force and speed of muscle contraction, but little is known about modifications to the contractile properties of the main physiological types of motor units (MUs) that contribute to these muscle adaptations. Although the contractile profile of MU muscle fibers is tightly coupled to myosin heavy chain (MyHC) protein expression, it is not well understood if MyHC transition is a prerequisite for modifications to the contractile characteristics of MUs. In this study, we examined MU contractile properties, the mRNA expression of MyHC, parvalbumin, and sarcoendoplasmic reticulum Ca
pump isoforms, as well as the MyHC protein content after 5 wk of volitional progressive weight-lifting training in the medial gastrocnemius muscle in rats. The training had no effect on MyHC profiling or Ca
-handling protein gene expression. Maximum force increased in slow (by 49%) and fast (by 21%) MUs. Within fast MUs, the maximum force increased in most fatigue-resistant and intermediate but not most fatigable MUs. Twitch contraction time was shortened in slow and fast fatigue-resistant MUs. Twitch half-relaxation was shortened in fast most fatigue-resistant and intermediate MUs. The force-frequency curve shifted rightward in fast fatigue-resistant MUs. Fast fatigable MUs fatigued less within the initial 15 s while fast fatigue-resistant units increased the ability to potentiate the force within the first minute of the standard fatigue test. In conclusion, at the early stage of resistance training, modifications to the contractile characteristics of MUs appear in the absence of MyHC transition and the upregulation of Ca
-handling genes.</description><subject>Adaptation, Physiological - physiology</subject><subject>Animals</subject><subject>Calcium Signaling - physiology</subject><subject>Endoplasmic reticulum</subject><subject>Exercise</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - physiology</subject><subject>Male</subject><subject>Motor Neurons - physiology</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle Fatigue - physiology</subject><subject>Muscle Fibers, Fast-Twitch - physiology</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - physiology</subject><subject>Myosin Heavy Chains - metabolism</subject><subject>Physical Conditioning, Animal - methods</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Resistance Training - methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Rodents</subject><subject>Volition - physiology</subject><issn>8750-7587</issn><issn>1522-1601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS0EotPCK4AlNmwy-Dd2ltWopZUqsYF15PFcdzxy4mA7bfMefWA8bUGIFd74SPfc7_r6IPSRkjWlkn05mGkK037JPoY1IZyTNSO0fYVWtcoa2hL6Gq20kqRRUqsTdJrzgRAqhKRv0QlTkneikyv0uIljScYWHwBPKU6QioeMo8NDLDHhefQlYzPuMDxMCXKdOD5Vl5j9iPdg7hZs96Zqn6OLaci46mQKdiaXpiwT4GHOtvKNK5DwXQy-VIoJ-B787b40wbvix1tcH-LHKt6hN86EDO9f7jP04_Li--aqufn29XpzftNYobvSSGBAOkekJVa2phWdU1LthN1JCqA66Rjnph4O2uit2jputeVKMA1b0rb8DH1-5tbFf86QSz_4bCEEM0Kcc081V6xrdfdfVsk1r39arZ_-sR7inOq6RxdTgmoqjkD17LIp5pzA9VPyg0lLT0l_zLj_O-P-KeP-mHHt_PDCn7cD7P70_Q6V_wJs_Kok</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Łochyński, Dawid</creator><creator>Kaczmarek, Dominik</creator><creator>Mrówczyński, Włodzimierz</creator><creator>Warchoł, Wojciech</creator><creator>Majerczak, Joanna</creator><creator>Karasiński, Janusz</creator><creator>Korostyński, Michał</creator><creator>Zoladz, Jerzy A</creator><creator>Celichowski, Jan</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20161001</creationdate><title>Contractile properties of motor units and expression of myosin heavy chain isoforms in rat fast-type muscle after volitional weight-lifting training</title><author>Łochyński, Dawid ; Kaczmarek, Dominik ; Mrówczyński, Włodzimierz ; Warchoł, Wojciech ; Majerczak, Joanna ; Karasiński, Janusz ; Korostyński, Michał ; Zoladz, Jerzy A ; Celichowski, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-5e2e09f05c0c56a649f757d4cd51ee795f233aaaa3e8a8b7bf3c8c37428eb0663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation, Physiological - physiology</topic><topic>Animals</topic><topic>Calcium Signaling - physiology</topic><topic>Endoplasmic reticulum</topic><topic>Exercise</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - physiology</topic><topic>Male</topic><topic>Motor Neurons - physiology</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle Fatigue - physiology</topic><topic>Muscle Fibers, Fast-Twitch - physiology</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - physiology</topic><topic>Myosin Heavy Chains - metabolism</topic><topic>Physical Conditioning, Animal - methods</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Resistance Training - methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Rodents</topic><topic>Volition - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Łochyński, Dawid</creatorcontrib><creatorcontrib>Kaczmarek, Dominik</creatorcontrib><creatorcontrib>Mrówczyński, Włodzimierz</creatorcontrib><creatorcontrib>Warchoł, Wojciech</creatorcontrib><creatorcontrib>Majerczak, Joanna</creatorcontrib><creatorcontrib>Karasiński, Janusz</creatorcontrib><creatorcontrib>Korostyński, Michał</creatorcontrib><creatorcontrib>Zoladz, Jerzy A</creatorcontrib><creatorcontrib>Celichowski, Jan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Journal of applied physiology (1985)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Łochyński, Dawid</au><au>Kaczmarek, Dominik</au><au>Mrówczyński, Włodzimierz</au><au>Warchoł, Wojciech</au><au>Majerczak, Joanna</au><au>Karasiński, Janusz</au><au>Korostyński, Michał</au><au>Zoladz, Jerzy A</au><au>Celichowski, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contractile properties of motor units and expression of myosin heavy chain isoforms in rat fast-type muscle after volitional weight-lifting training</atitle><jtitle>Journal of applied physiology (1985)</jtitle><addtitle>J Appl Physiol (1985)</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>121</volume><issue>4</issue><spage>858</spage><epage>869</epage><pages>858-869</pages><issn>8750-7587</issn><eissn>1522-1601</eissn><abstract>Dynamic resistance training increases the force and speed of muscle contraction, but little is known about modifications to the contractile properties of the main physiological types of motor units (MUs) that contribute to these muscle adaptations. Although the contractile profile of MU muscle fibers is tightly coupled to myosin heavy chain (MyHC) protein expression, it is not well understood if MyHC transition is a prerequisite for modifications to the contractile characteristics of MUs. In this study, we examined MU contractile properties, the mRNA expression of MyHC, parvalbumin, and sarcoendoplasmic reticulum Ca
pump isoforms, as well as the MyHC protein content after 5 wk of volitional progressive weight-lifting training in the medial gastrocnemius muscle in rats. The training had no effect on MyHC profiling or Ca
-handling protein gene expression. Maximum force increased in slow (by 49%) and fast (by 21%) MUs. Within fast MUs, the maximum force increased in most fatigue-resistant and intermediate but not most fatigable MUs. Twitch contraction time was shortened in slow and fast fatigue-resistant MUs. Twitch half-relaxation was shortened in fast most fatigue-resistant and intermediate MUs. The force-frequency curve shifted rightward in fast fatigue-resistant MUs. Fast fatigable MUs fatigued less within the initial 15 s while fast fatigue-resistant units increased the ability to potentiate the force within the first minute of the standard fatigue test. In conclusion, at the early stage of resistance training, modifications to the contractile characteristics of MUs appear in the absence of MyHC transition and the upregulation of Ca
-handling genes.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>27539495</pmid><doi>10.1152/japplphysiol.00330.2016</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8750-7587 |
ispartof | Journal of applied physiology (1985), 2016-10, Vol.121 (4), p.858-869 |
issn | 8750-7587 1522-1601 |
language | eng |
recordid | cdi_proquest_miscellaneous_1837296896 |
source | MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Adaptation, Physiological - physiology Animals Calcium Signaling - physiology Endoplasmic reticulum Exercise Gene expression Gene Expression Regulation - physiology Male Motor Neurons - physiology Muscle Contraction - physiology Muscle Fatigue - physiology Muscle Fibers, Fast-Twitch - physiology Muscle, Skeletal - cytology Muscle, Skeletal - physiology Myosin Heavy Chains - metabolism Physical Conditioning, Animal - methods Proteins Rats Rats, Wistar Resistance Training - methods Ribonucleic acid RNA Rodents Volition - physiology |
title | Contractile properties of motor units and expression of myosin heavy chain isoforms in rat fast-type muscle after volitional weight-lifting training |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T20%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contractile%20properties%20of%20motor%20units%20and%20expression%20of%20myosin%20heavy%20chain%20isoforms%20in%20rat%20fast-type%20muscle%20after%20volitional%20weight-lifting%20training&rft.jtitle=Journal%20of%20applied%20physiology%20(1985)&rft.au=%C5%81ochy%C5%84ski,%20Dawid&rft.date=2016-10-01&rft.volume=121&rft.issue=4&rft.spage=858&rft.epage=869&rft.pages=858-869&rft.issn=8750-7587&rft.eissn=1522-1601&rft_id=info:doi/10.1152/japplphysiol.00330.2016&rft_dat=%3Cproquest_cross%3E1837296896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1827418146&rft_id=info:pmid/27539495&rfr_iscdi=true |