Impact of leukoaraiosis on parenchymal hemorrhage in elderly patients treated with thrombolysis

Introduction Severity of vascular damage of white matter may predict hemorrhagic transformation (HT). We assess the relationship between leukoaraiosis (LA) severity and the type of hemorrhagic transformation in elderly patients treated with thrombolysis. Methods We retrospectively analyzed the clini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroradiology 2016-10, Vol.58 (10), p.961-967
Hauptverfasser: Nighoghossian, Norbert, Abbas, Fatima, Cho, Tae-Hee, Geraldo, Ana Filipa, Cottaz, Vincent, Janecek, Elie, Mechtouff, Laura, Bischoff, Magali, El Khoury, Carlos, Schott, Anne Marie, Derex, Laurent, Hermier, Marc, Tisserand, Louis Guy, Amelie, Roxana, Chamard, Leila, Berthezene, Yves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 967
container_issue 10
container_start_page 961
container_title Neuroradiology
container_volume 58
creator Nighoghossian, Norbert
Abbas, Fatima
Cho, Tae-Hee
Geraldo, Ana Filipa
Cottaz, Vincent
Janecek, Elie
Mechtouff, Laura
Bischoff, Magali
El Khoury, Carlos
Schott, Anne Marie
Derex, Laurent
Hermier, Marc
Tisserand, Louis Guy
Amelie, Roxana
Chamard, Leila
Berthezene, Yves
description Introduction Severity of vascular damage of white matter may predict hemorrhagic transformation (HT). We assess the relationship between leukoaraiosis (LA) severity and the type of hemorrhagic transformation in elderly patients treated with thrombolysis. Methods We retrospectively analyzed the clinical data and pretreatment magnetic resonance imaging (MRI) of 180 consecutive ischemic stroke patients aged over 75 years. LA severity was graded according to the Fazekas scale, and acute diffusion-weighted-imaging (DWI) lesion volumes were semi-automatically outlined. Predictors of hemorrhagic infarction (HI) and parenchymal hemorrhage (PH) were identified using logistic regression analysis and exact multinomial logistic analysis. Results HT occurred in 31 patients (17 %). Baseline National Institute of Health Stroke Score (NIHSS; p  = 0.008), severe LA ( p  = 0.02), and diffusion lesion volume ( p  = 0.02) were predictors of HT in univariable logistic regression. Adjusted to lesion volume and baseline NIHSS score, exact multinomial logistic analysis showed that severe LA was the only independent predictor of parenchymal hemorrhage ( p  = 0.03). Conclusion In elderly patients, LA severity better predicts parenchymal hemorrhage than infarct size.
doi_str_mv 10.1007/s00234-016-1725-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837294503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1837294503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-67470a096c3814c8b9601602e634aa05ac7866210d716415b3d6c06542cb955c3</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVoaLab_oBeiqCXXNyMPizZx7Ak7UIgl-QsZHl27dS2NpJM2H9fLbsppRDoSYd55hm9vIR8YfCdAejrCMCFLICpgmleFvqMLJgUvGA1hw9kkcdVIWoJF-RTjM8AILTQH8kF11LqSvMFMetxZ12ifkMHnH95G2zvYx-pn-jOBpxctx_tQDscfQid3SLtJ4pDi2HYZyL1OKVIU0CbsKWvfepo6oIfGz_ss-eSnG_sEPHz6V2Sp7vbx9XP4v7hx3p1c184CWUqlJYaLNTKiYpJVzW1yqmAoxLSWiit05VSnEGrmZKsbESrHKhSctfUZenEklwdvbvgX2aMyYx9dDgMdkI_R8MqoXktSxD_gXKlBRdMZfTbP-izn8OUgxyEAEznP2SKHSkXfIwBN2YX-tGGvWFgDkWZY1EmRzKHoozOO19P5rkZsf2z8dZMBvgRiHk0bTH8dfpd628DU5xW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830017065</pqid></control><display><type>article</type><title>Impact of leukoaraiosis on parenchymal hemorrhage in elderly patients treated with thrombolysis</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Nighoghossian, Norbert ; Abbas, Fatima ; Cho, Tae-Hee ; Geraldo, Ana Filipa ; Cottaz, Vincent ; Janecek, Elie ; Mechtouff, Laura ; Bischoff, Magali ; El Khoury, Carlos ; Schott, Anne Marie ; Derex, Laurent ; Hermier, Marc ; Tisserand, Louis Guy ; Amelie, Roxana ; Chamard, Leila ; Berthezene, Yves</creator><creatorcontrib>Nighoghossian, Norbert ; Abbas, Fatima ; Cho, Tae-Hee ; Geraldo, Ana Filipa ; Cottaz, Vincent ; Janecek, Elie ; Mechtouff, Laura ; Bischoff, Magali ; El Khoury, Carlos ; Schott, Anne Marie ; Derex, Laurent ; Hermier, Marc ; Tisserand, Louis Guy ; Amelie, Roxana ; Chamard, Leila ; Berthezene, Yves</creatorcontrib><description>Introduction Severity of vascular damage of white matter may predict hemorrhagic transformation (HT). We assess the relationship between leukoaraiosis (LA) severity and the type of hemorrhagic transformation in elderly patients treated with thrombolysis. Methods We retrospectively analyzed the clinical data and pretreatment magnetic resonance imaging (MRI) of 180 consecutive ischemic stroke patients aged over 75 years. LA severity was graded according to the Fazekas scale, and acute diffusion-weighted-imaging (DWI) lesion volumes were semi-automatically outlined. Predictors of hemorrhagic infarction (HI) and parenchymal hemorrhage (PH) were identified using logistic regression analysis and exact multinomial logistic analysis. Results HT occurred in 31 patients (17 %). Baseline National Institute of Health Stroke Score (NIHSS; p  = 0.008), severe LA ( p  = 0.02), and diffusion lesion volume ( p  = 0.02) were predictors of HT in univariable logistic regression. Adjusted to lesion volume and baseline NIHSS score, exact multinomial logistic analysis showed that severe LA was the only independent predictor of parenchymal hemorrhage ( p  = 0.03). Conclusion In elderly patients, LA severity better predicts parenchymal hemorrhage than infarct size.</description><identifier>ISSN: 0028-3940</identifier><identifier>EISSN: 1432-1920</identifier><identifier>DOI: 10.1007/s00234-016-1725-7</identifier><identifier>PMID: 27447872</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aged, 80 and over ; Causality ; Cerebral Hemorrhage - diagnostic imaging ; Cerebral Hemorrhage - epidemiology ; Cerebral Hemorrhage - therapy ; Comorbidity ; Diagnostic Neuroradiology ; Female ; France - epidemiology ; Hemorrhage ; Humans ; Imaging ; Ischemia ; Leukoaraiosis - diagnostic imaging ; Leukoaraiosis - epidemiology ; Leukoaraiosis - prevention &amp; control ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Imaging - statistics &amp; numerical data ; Male ; Medicine ; Medicine &amp; Public Health ; Neurology ; Neuroradiology ; Neurosciences ; Neurosurgery ; NMR ; Nuclear magnetic resonance ; Older people ; Prevalence ; Prognosis ; Radiology ; Reproducibility of Results ; Risk Factors ; Sensitivity and Specificity ; Stroke ; Thrombolytic drugs ; Thrombolytic Therapy - statistics &amp; numerical data ; Treatment Outcome</subject><ispartof>Neuroradiology, 2016-10, Vol.58 (10), p.961-967</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-67470a096c3814c8b9601602e634aa05ac7866210d716415b3d6c06542cb955c3</citedby><cites>FETCH-LOGICAL-c405t-67470a096c3814c8b9601602e634aa05ac7866210d716415b3d6c06542cb955c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00234-016-1725-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00234-016-1725-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27447872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nighoghossian, Norbert</creatorcontrib><creatorcontrib>Abbas, Fatima</creatorcontrib><creatorcontrib>Cho, Tae-Hee</creatorcontrib><creatorcontrib>Geraldo, Ana Filipa</creatorcontrib><creatorcontrib>Cottaz, Vincent</creatorcontrib><creatorcontrib>Janecek, Elie</creatorcontrib><creatorcontrib>Mechtouff, Laura</creatorcontrib><creatorcontrib>Bischoff, Magali</creatorcontrib><creatorcontrib>El Khoury, Carlos</creatorcontrib><creatorcontrib>Schott, Anne Marie</creatorcontrib><creatorcontrib>Derex, Laurent</creatorcontrib><creatorcontrib>Hermier, Marc</creatorcontrib><creatorcontrib>Tisserand, Louis Guy</creatorcontrib><creatorcontrib>Amelie, Roxana</creatorcontrib><creatorcontrib>Chamard, Leila</creatorcontrib><creatorcontrib>Berthezene, Yves</creatorcontrib><title>Impact of leukoaraiosis on parenchymal hemorrhage in elderly patients treated with thrombolysis</title><title>Neuroradiology</title><addtitle>Neuroradiology</addtitle><addtitle>Neuroradiology</addtitle><description>Introduction Severity of vascular damage of white matter may predict hemorrhagic transformation (HT). We assess the relationship between leukoaraiosis (LA) severity and the type of hemorrhagic transformation in elderly patients treated with thrombolysis. Methods We retrospectively analyzed the clinical data and pretreatment magnetic resonance imaging (MRI) of 180 consecutive ischemic stroke patients aged over 75 years. LA severity was graded according to the Fazekas scale, and acute diffusion-weighted-imaging (DWI) lesion volumes were semi-automatically outlined. Predictors of hemorrhagic infarction (HI) and parenchymal hemorrhage (PH) were identified using logistic regression analysis and exact multinomial logistic analysis. Results HT occurred in 31 patients (17 %). Baseline National Institute of Health Stroke Score (NIHSS; p  = 0.008), severe LA ( p  = 0.02), and diffusion lesion volume ( p  = 0.02) were predictors of HT in univariable logistic regression. Adjusted to lesion volume and baseline NIHSS score, exact multinomial logistic analysis showed that severe LA was the only independent predictor of parenchymal hemorrhage ( p  = 0.03). Conclusion In elderly patients, LA severity better predicts parenchymal hemorrhage than infarct size.</description><subject>Aged, 80 and over</subject><subject>Causality</subject><subject>Cerebral Hemorrhage - diagnostic imaging</subject><subject>Cerebral Hemorrhage - epidemiology</subject><subject>Cerebral Hemorrhage - therapy</subject><subject>Comorbidity</subject><subject>Diagnostic Neuroradiology</subject><subject>Female</subject><subject>France - epidemiology</subject><subject>Hemorrhage</subject><subject>Humans</subject><subject>Imaging</subject><subject>Ischemia</subject><subject>Leukoaraiosis - diagnostic imaging</subject><subject>Leukoaraiosis - epidemiology</subject><subject>Leukoaraiosis - prevention &amp; control</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Imaging - statistics &amp; numerical data</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neurology</subject><subject>Neuroradiology</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Older people</subject><subject>Prevalence</subject><subject>Prognosis</subject><subject>Radiology</subject><subject>Reproducibility of Results</subject><subject>Risk Factors</subject><subject>Sensitivity and Specificity</subject><subject>Stroke</subject><subject>Thrombolytic drugs</subject><subject>Thrombolytic Therapy - statistics &amp; numerical data</subject><subject>Treatment Outcome</subject><issn>0028-3940</issn><issn>1432-1920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkU1r3DAQhkVoaLab_oBeiqCXXNyMPizZx7Ak7UIgl-QsZHl27dS2NpJM2H9fLbsppRDoSYd55hm9vIR8YfCdAejrCMCFLICpgmleFvqMLJgUvGA1hw9kkcdVIWoJF-RTjM8AILTQH8kF11LqSvMFMetxZ12ifkMHnH95G2zvYx-pn-jOBpxctx_tQDscfQid3SLtJ4pDi2HYZyL1OKVIU0CbsKWvfepo6oIfGz_ss-eSnG_sEPHz6V2Sp7vbx9XP4v7hx3p1c184CWUqlJYaLNTKiYpJVzW1yqmAoxLSWiit05VSnEGrmZKsbESrHKhSctfUZenEklwdvbvgX2aMyYx9dDgMdkI_R8MqoXktSxD_gXKlBRdMZfTbP-izn8OUgxyEAEznP2SKHSkXfIwBN2YX-tGGvWFgDkWZY1EmRzKHoozOO19P5rkZsf2z8dZMBvgRiHk0bTH8dfpd628DU5xW</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Nighoghossian, Norbert</creator><creator>Abbas, Fatima</creator><creator>Cho, Tae-Hee</creator><creator>Geraldo, Ana Filipa</creator><creator>Cottaz, Vincent</creator><creator>Janecek, Elie</creator><creator>Mechtouff, Laura</creator><creator>Bischoff, Magali</creator><creator>El Khoury, Carlos</creator><creator>Schott, Anne Marie</creator><creator>Derex, Laurent</creator><creator>Hermier, Marc</creator><creator>Tisserand, Louis Guy</creator><creator>Amelie, Roxana</creator><creator>Chamard, Leila</creator><creator>Berthezene, Yves</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20161001</creationdate><title>Impact of leukoaraiosis on parenchymal hemorrhage in elderly patients treated with thrombolysis</title><author>Nighoghossian, Norbert ; Abbas, Fatima ; Cho, Tae-Hee ; Geraldo, Ana Filipa ; Cottaz, Vincent ; Janecek, Elie ; Mechtouff, Laura ; Bischoff, Magali ; El Khoury, Carlos ; Schott, Anne Marie ; Derex, Laurent ; Hermier, Marc ; Tisserand, Louis Guy ; Amelie, Roxana ; Chamard, Leila ; Berthezene, Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-67470a096c3814c8b9601602e634aa05ac7866210d716415b3d6c06542cb955c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aged, 80 and over</topic><topic>Causality</topic><topic>Cerebral Hemorrhage - diagnostic imaging</topic><topic>Cerebral Hemorrhage - epidemiology</topic><topic>Cerebral Hemorrhage - therapy</topic><topic>Comorbidity</topic><topic>Diagnostic Neuroradiology</topic><topic>Female</topic><topic>France - epidemiology</topic><topic>Hemorrhage</topic><topic>Humans</topic><topic>Imaging</topic><topic>Ischemia</topic><topic>Leukoaraiosis - diagnostic imaging</topic><topic>Leukoaraiosis - epidemiology</topic><topic>Leukoaraiosis - prevention &amp; control</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Imaging - statistics &amp; numerical data</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neurology</topic><topic>Neuroradiology</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Older people</topic><topic>Prevalence</topic><topic>Prognosis</topic><topic>Radiology</topic><topic>Reproducibility of Results</topic><topic>Risk Factors</topic><topic>Sensitivity and Specificity</topic><topic>Stroke</topic><topic>Thrombolytic drugs</topic><topic>Thrombolytic Therapy - statistics &amp; numerical data</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nighoghossian, Norbert</creatorcontrib><creatorcontrib>Abbas, Fatima</creatorcontrib><creatorcontrib>Cho, Tae-Hee</creatorcontrib><creatorcontrib>Geraldo, Ana Filipa</creatorcontrib><creatorcontrib>Cottaz, Vincent</creatorcontrib><creatorcontrib>Janecek, Elie</creatorcontrib><creatorcontrib>Mechtouff, Laura</creatorcontrib><creatorcontrib>Bischoff, Magali</creatorcontrib><creatorcontrib>El Khoury, Carlos</creatorcontrib><creatorcontrib>Schott, Anne Marie</creatorcontrib><creatorcontrib>Derex, Laurent</creatorcontrib><creatorcontrib>Hermier, Marc</creatorcontrib><creatorcontrib>Tisserand, Louis Guy</creatorcontrib><creatorcontrib>Amelie, Roxana</creatorcontrib><creatorcontrib>Chamard, Leila</creatorcontrib><creatorcontrib>Berthezene, Yves</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroradiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nighoghossian, Norbert</au><au>Abbas, Fatima</au><au>Cho, Tae-Hee</au><au>Geraldo, Ana Filipa</au><au>Cottaz, Vincent</au><au>Janecek, Elie</au><au>Mechtouff, Laura</au><au>Bischoff, Magali</au><au>El Khoury, Carlos</au><au>Schott, Anne Marie</au><au>Derex, Laurent</au><au>Hermier, Marc</au><au>Tisserand, Louis Guy</au><au>Amelie, Roxana</au><au>Chamard, Leila</au><au>Berthezene, Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of leukoaraiosis on parenchymal hemorrhage in elderly patients treated with thrombolysis</atitle><jtitle>Neuroradiology</jtitle><stitle>Neuroradiology</stitle><addtitle>Neuroradiology</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>58</volume><issue>10</issue><spage>961</spage><epage>967</epage><pages>961-967</pages><issn>0028-3940</issn><eissn>1432-1920</eissn><abstract>Introduction Severity of vascular damage of white matter may predict hemorrhagic transformation (HT). We assess the relationship between leukoaraiosis (LA) severity and the type of hemorrhagic transformation in elderly patients treated with thrombolysis. Methods We retrospectively analyzed the clinical data and pretreatment magnetic resonance imaging (MRI) of 180 consecutive ischemic stroke patients aged over 75 years. LA severity was graded according to the Fazekas scale, and acute diffusion-weighted-imaging (DWI) lesion volumes were semi-automatically outlined. Predictors of hemorrhagic infarction (HI) and parenchymal hemorrhage (PH) were identified using logistic regression analysis and exact multinomial logistic analysis. Results HT occurred in 31 patients (17 %). Baseline National Institute of Health Stroke Score (NIHSS; p  = 0.008), severe LA ( p  = 0.02), and diffusion lesion volume ( p  = 0.02) were predictors of HT in univariable logistic regression. Adjusted to lesion volume and baseline NIHSS score, exact multinomial logistic analysis showed that severe LA was the only independent predictor of parenchymal hemorrhage ( p  = 0.03). Conclusion In elderly patients, LA severity better predicts parenchymal hemorrhage than infarct size.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27447872</pmid><doi>10.1007/s00234-016-1725-7</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-3940
ispartof Neuroradiology, 2016-10, Vol.58 (10), p.961-967
issn 0028-3940
1432-1920
language eng
recordid cdi_proquest_miscellaneous_1837294503
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Aged, 80 and over
Causality
Cerebral Hemorrhage - diagnostic imaging
Cerebral Hemorrhage - epidemiology
Cerebral Hemorrhage - therapy
Comorbidity
Diagnostic Neuroradiology
Female
France - epidemiology
Hemorrhage
Humans
Imaging
Ischemia
Leukoaraiosis - diagnostic imaging
Leukoaraiosis - epidemiology
Leukoaraiosis - prevention & control
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - statistics & numerical data
Male
Medicine
Medicine & Public Health
Neurology
Neuroradiology
Neurosciences
Neurosurgery
NMR
Nuclear magnetic resonance
Older people
Prevalence
Prognosis
Radiology
Reproducibility of Results
Risk Factors
Sensitivity and Specificity
Stroke
Thrombolytic drugs
Thrombolytic Therapy - statistics & numerical data
Treatment Outcome
title Impact of leukoaraiosis on parenchymal hemorrhage in elderly patients treated with thrombolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20leukoaraiosis%20on%20parenchymal%20hemorrhage%20in%20elderly%20patients%20treated%20with%20thrombolysis&rft.jtitle=Neuroradiology&rft.au=Nighoghossian,%20Norbert&rft.date=2016-10-01&rft.volume=58&rft.issue=10&rft.spage=961&rft.epage=967&rft.pages=961-967&rft.issn=0028-3940&rft.eissn=1432-1920&rft_id=info:doi/10.1007/s00234-016-1725-7&rft_dat=%3Cproquest_cross%3E1837294503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1830017065&rft_id=info:pmid/27447872&rfr_iscdi=true