Mitochondrial aldehyde dehydrogenase 2 deficiency aggravates energy metabolism disturbance and diastolic dysfunction in diabetic mice
Diabetes causes energy metabolism disturbance and may lead to cardiac dysfunction. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) protects cardiac function from myocardial damage. Therefore, understanding of its roles in diabetic heart is critical for developing new therapeutics targeting ALDH2 and...
Gespeichert in:
Veröffentlicht in: | Journal of molecular medicine (Berlin, Germany) Germany), 2016-11, Vol.94 (11), p.1229-1240 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1240 |
---|---|
container_issue | 11 |
container_start_page | 1229 |
container_title | Journal of molecular medicine (Berlin, Germany) |
container_volume | 94 |
creator | Wang, Cong Fan, Fan Cao, Quan Shen, Cheng Zhu, Hong Wang, Peng Zhao, Xiaona Sun, Xiaolei Dong, Zhen Ma, Xin liu, Xiangwei Han, Shasha Wu, Chaoneng Zou, Yunzeng Hu, Kai Ge, Junbo Sun, Aijun |
description | Diabetes causes energy metabolism disturbance and may lead to cardiac dysfunction. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) protects cardiac function from myocardial damage. Therefore, understanding of its roles in diabetic heart is critical for developing new therapeutics targeting ALDH2 and mitochondrial function for diabetic hearts. This study investigated the impact of ALDH2 deficiency on diastolic function and energy metabolism in diabetic mice. Diabetes was induced in ALDH2 knockout and wild-type mice by streptozotocin. Cardiac function was determined by echocardiography. Glucose uptake, energy status, and metabolic profiles were used to evaluate cardiac energy metabolism. The association between ALDH2 polymorphism and diabetes was also analyzed in patients. Echocardiography revealed preserved systolic function and impaired diastolic function in diabetic ALDH2-deficient mice. Energy reserves (phosphocreatine/adenosine triphosphate ratio) were reduced in the diabetic mutants and were associated with diastolic dysfunction. Western blot analysis showed that diabetes induces accumulated lipid peroxidation products and escalated AMP-activated protein kinase–LKB1 pathway. Further, ALDH2 deficiency exacerbated the diabetes-induced deficient myocardial glucose uptake and other perturbations of metabolic profiles. Finally, ALDH2 mutations were associated with worse diastolic dysfunction in diabetic patients. Together, our results demonstrate that ALDH2 deficiency and resulting energy metabolism disturbance is a part of pathology of diastolic dysfunction of diabetic hearts, and suggest that patients with ALDH2 mutations are vulnerable to diabetic damage.
Key Message
ALDH2 deficiency exacerbates diastolic dysfunction in early diabetic hearts.
ALDH2 deficiency triggers decompensation of metabolic reserves and energy metabolism disturbances in early diabetic hearts.
ALDH2 deficiency potentiates oxidative stress and AMPK phosphorylation induced by diabetes via post-translational regulation of LKB1.
Diabetic patients with ALDH2 mutations are predisposed to worse diastolic dysfunction. |
doi_str_mv | 10.1007/s00109-016-1449-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837293931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1837293931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-82aeea5b9d465e6c56ec4f9186f4d7d9ea287431f642a230a9e4bed7ab75d7a33</originalsourceid><addsrcrecordid>eNqNkctu1jAQhS0Eoj-FB2CDLLFhE7AdX-IlqrhUasWGrqOJPUldJU6xE6Q8AO9dp39BqBISG4_G55szsg8hrzl7zxkzHzJjnNmKcV1xKW2lnpADl7XYO_aUHJiVuhKG6xPyIuebQhtl5XNyIoxsGqn4gfy6DMvsrufoU4CRwujxevNI70uaB4yQkYrS98EFjG6jMAwJfsKCmWLENGx0wgW6eQx5oj7kZU0dRIcUoi895KVIjvot92t0S5gjDXEXOlzK_RQcviTPehgzvnqop-Tq86fvZ1-ri29fzs8-XlROGrVUjQBEUJ31UivUTml0sre80b30xlsE0RhZ815LAaJmYFF26A10RpWzrk_Ju6PvbZp_rJiXdgrZ4ThCxHnNLW9qI2xta_4fqNBGilqxgr59hN7Ma4rlIbth-XVtjS0UP1IuzTkn7NvbFCZIW8tZu8fZHuNsC9_ucbaqzLx5cF67Cf2fid_5FUAcgVykOGD6a_U_Xe8Au3Os4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830016979</pqid></control><display><type>article</type><title>Mitochondrial aldehyde dehydrogenase 2 deficiency aggravates energy metabolism disturbance and diastolic dysfunction in diabetic mice</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Wang, Cong ; Fan, Fan ; Cao, Quan ; Shen, Cheng ; Zhu, Hong ; Wang, Peng ; Zhao, Xiaona ; Sun, Xiaolei ; Dong, Zhen ; Ma, Xin ; liu, Xiangwei ; Han, Shasha ; Wu, Chaoneng ; Zou, Yunzeng ; Hu, Kai ; Ge, Junbo ; Sun, Aijun</creator><creatorcontrib>Wang, Cong ; Fan, Fan ; Cao, Quan ; Shen, Cheng ; Zhu, Hong ; Wang, Peng ; Zhao, Xiaona ; Sun, Xiaolei ; Dong, Zhen ; Ma, Xin ; liu, Xiangwei ; Han, Shasha ; Wu, Chaoneng ; Zou, Yunzeng ; Hu, Kai ; Ge, Junbo ; Sun, Aijun</creatorcontrib><description>Diabetes causes energy metabolism disturbance and may lead to cardiac dysfunction. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) protects cardiac function from myocardial damage. Therefore, understanding of its roles in diabetic heart is critical for developing new therapeutics targeting ALDH2 and mitochondrial function for diabetic hearts. This study investigated the impact of ALDH2 deficiency on diastolic function and energy metabolism in diabetic mice. Diabetes was induced in ALDH2 knockout and wild-type mice by streptozotocin. Cardiac function was determined by echocardiography. Glucose uptake, energy status, and metabolic profiles were used to evaluate cardiac energy metabolism. The association between ALDH2 polymorphism and diabetes was also analyzed in patients. Echocardiography revealed preserved systolic function and impaired diastolic function in diabetic ALDH2-deficient mice. Energy reserves (phosphocreatine/adenosine triphosphate ratio) were reduced in the diabetic mutants and were associated with diastolic dysfunction. Western blot analysis showed that diabetes induces accumulated lipid peroxidation products and escalated AMP-activated protein kinase–LKB1 pathway. Further, ALDH2 deficiency exacerbated the diabetes-induced deficient myocardial glucose uptake and other perturbations of metabolic profiles. Finally, ALDH2 mutations were associated with worse diastolic dysfunction in diabetic patients. Together, our results demonstrate that ALDH2 deficiency and resulting energy metabolism disturbance is a part of pathology of diastolic dysfunction of diabetic hearts, and suggest that patients with ALDH2 mutations are vulnerable to diabetic damage.
Key Message
ALDH2 deficiency exacerbates diastolic dysfunction in early diabetic hearts.
ALDH2 deficiency triggers decompensation of metabolic reserves and energy metabolism disturbances in early diabetic hearts.
ALDH2 deficiency potentiates oxidative stress and AMPK phosphorylation induced by diabetes via post-translational regulation of LKB1.
Diabetic patients with ALDH2 mutations are predisposed to worse diastolic dysfunction.</description><identifier>ISSN: 0946-2716</identifier><identifier>EISSN: 1432-1440</identifier><identifier>DOI: 10.1007/s00109-016-1449-5</identifier><identifier>PMID: 27488451</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aged ; Aldehyde Dehydrogenase, Mitochondrial - deficiency ; Aldehyde Dehydrogenase, Mitochondrial - genetics ; Aldehyde Dehydrogenase, Mitochondrial - metabolism ; Aldehydes - metabolism ; AMP-Activated Protein Kinases - metabolism ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Diabetes Mellitus, Experimental - enzymology ; Diabetes Mellitus, Experimental - metabolism ; Diabetes Mellitus, Experimental - physiopathology ; Diastole ; Energy Metabolism ; Female ; Glucose - metabolism ; Heart Function Tests ; Heart Ventricles - pathology ; Heart Ventricles - physiopathology ; Heart Ventricles - ultrastructure ; Human Genetics ; Humans ; Internal Medicine ; Lipid Peroxidation ; Male ; Metabolomics ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondria - enzymology ; Molecular Medicine ; Mutation - genetics ; Myocardium - metabolism ; Myocardium - pathology ; Original Article ; Signal Transduction</subject><ispartof>Journal of molecular medicine (Berlin, Germany), 2016-11, Vol.94 (11), p.1229-1240</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-82aeea5b9d465e6c56ec4f9186f4d7d9ea287431f642a230a9e4bed7ab75d7a33</citedby><cites>FETCH-LOGICAL-c475t-82aeea5b9d465e6c56ec4f9186f4d7d9ea287431f642a230a9e4bed7ab75d7a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00109-016-1449-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00109-016-1449-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27488451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Fan, Fan</creatorcontrib><creatorcontrib>Cao, Quan</creatorcontrib><creatorcontrib>Shen, Cheng</creatorcontrib><creatorcontrib>Zhu, Hong</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Zhao, Xiaona</creatorcontrib><creatorcontrib>Sun, Xiaolei</creatorcontrib><creatorcontrib>Dong, Zhen</creatorcontrib><creatorcontrib>Ma, Xin</creatorcontrib><creatorcontrib>liu, Xiangwei</creatorcontrib><creatorcontrib>Han, Shasha</creatorcontrib><creatorcontrib>Wu, Chaoneng</creatorcontrib><creatorcontrib>Zou, Yunzeng</creatorcontrib><creatorcontrib>Hu, Kai</creatorcontrib><creatorcontrib>Ge, Junbo</creatorcontrib><creatorcontrib>Sun, Aijun</creatorcontrib><title>Mitochondrial aldehyde dehydrogenase 2 deficiency aggravates energy metabolism disturbance and diastolic dysfunction in diabetic mice</title><title>Journal of molecular medicine (Berlin, Germany)</title><addtitle>J Mol Med</addtitle><addtitle>J Mol Med (Berl)</addtitle><description>Diabetes causes energy metabolism disturbance and may lead to cardiac dysfunction. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) protects cardiac function from myocardial damage. Therefore, understanding of its roles in diabetic heart is critical for developing new therapeutics targeting ALDH2 and mitochondrial function for diabetic hearts. This study investigated the impact of ALDH2 deficiency on diastolic function and energy metabolism in diabetic mice. Diabetes was induced in ALDH2 knockout and wild-type mice by streptozotocin. Cardiac function was determined by echocardiography. Glucose uptake, energy status, and metabolic profiles were used to evaluate cardiac energy metabolism. The association between ALDH2 polymorphism and diabetes was also analyzed in patients. Echocardiography revealed preserved systolic function and impaired diastolic function in diabetic ALDH2-deficient mice. Energy reserves (phosphocreatine/adenosine triphosphate ratio) were reduced in the diabetic mutants and were associated with diastolic dysfunction. Western blot analysis showed that diabetes induces accumulated lipid peroxidation products and escalated AMP-activated protein kinase–LKB1 pathway. Further, ALDH2 deficiency exacerbated the diabetes-induced deficient myocardial glucose uptake and other perturbations of metabolic profiles. Finally, ALDH2 mutations were associated with worse diastolic dysfunction in diabetic patients. Together, our results demonstrate that ALDH2 deficiency and resulting energy metabolism disturbance is a part of pathology of diastolic dysfunction of diabetic hearts, and suggest that patients with ALDH2 mutations are vulnerable to diabetic damage.
Key Message
ALDH2 deficiency exacerbates diastolic dysfunction in early diabetic hearts.
ALDH2 deficiency triggers decompensation of metabolic reserves and energy metabolism disturbances in early diabetic hearts.
ALDH2 deficiency potentiates oxidative stress and AMPK phosphorylation induced by diabetes via post-translational regulation of LKB1.
Diabetic patients with ALDH2 mutations are predisposed to worse diastolic dysfunction.</description><subject>Aged</subject><subject>Aldehyde Dehydrogenase, Mitochondrial - deficiency</subject><subject>Aldehyde Dehydrogenase, Mitochondrial - genetics</subject><subject>Aldehyde Dehydrogenase, Mitochondrial - metabolism</subject><subject>Aldehydes - metabolism</subject><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Diabetes Mellitus, Experimental - enzymology</subject><subject>Diabetes Mellitus, Experimental - metabolism</subject><subject>Diabetes Mellitus, Experimental - physiopathology</subject><subject>Diastole</subject><subject>Energy Metabolism</subject><subject>Female</subject><subject>Glucose - metabolism</subject><subject>Heart Function Tests</subject><subject>Heart Ventricles - pathology</subject><subject>Heart Ventricles - physiopathology</subject><subject>Heart Ventricles - ultrastructure</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Lipid Peroxidation</subject><subject>Male</subject><subject>Metabolomics</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mitochondria - enzymology</subject><subject>Molecular Medicine</subject><subject>Mutation - genetics</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - pathology</subject><subject>Original Article</subject><subject>Signal Transduction</subject><issn>0946-2716</issn><issn>1432-1440</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNqNkctu1jAQhS0Eoj-FB2CDLLFhE7AdX-IlqrhUasWGrqOJPUldJU6xE6Q8AO9dp39BqBISG4_G55szsg8hrzl7zxkzHzJjnNmKcV1xKW2lnpADl7XYO_aUHJiVuhKG6xPyIuebQhtl5XNyIoxsGqn4gfy6DMvsrufoU4CRwujxevNI70uaB4yQkYrS98EFjG6jMAwJfsKCmWLENGx0wgW6eQx5oj7kZU0dRIcUoi895KVIjvot92t0S5gjDXEXOlzK_RQcviTPehgzvnqop-Tq86fvZ1-ri29fzs8-XlROGrVUjQBEUJ31UivUTml0sre80b30xlsE0RhZ815LAaJmYFF26A10RpWzrk_Ju6PvbZp_rJiXdgrZ4ThCxHnNLW9qI2xta_4fqNBGilqxgr59hN7Ma4rlIbth-XVtjS0UP1IuzTkn7NvbFCZIW8tZu8fZHuNsC9_ucbaqzLx5cF67Cf2fid_5FUAcgVykOGD6a_U_Xe8Au3Os4g</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Wang, Cong</creator><creator>Fan, Fan</creator><creator>Cao, Quan</creator><creator>Shen, Cheng</creator><creator>Zhu, Hong</creator><creator>Wang, Peng</creator><creator>Zhao, Xiaona</creator><creator>Sun, Xiaolei</creator><creator>Dong, Zhen</creator><creator>Ma, Xin</creator><creator>liu, Xiangwei</creator><creator>Han, Shasha</creator><creator>Wu, Chaoneng</creator><creator>Zou, Yunzeng</creator><creator>Hu, Kai</creator><creator>Ge, Junbo</creator><creator>Sun, Aijun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20161101</creationdate><title>Mitochondrial aldehyde dehydrogenase 2 deficiency aggravates energy metabolism disturbance and diastolic dysfunction in diabetic mice</title><author>Wang, Cong ; Fan, Fan ; Cao, Quan ; Shen, Cheng ; Zhu, Hong ; Wang, Peng ; Zhao, Xiaona ; Sun, Xiaolei ; Dong, Zhen ; Ma, Xin ; liu, Xiangwei ; Han, Shasha ; Wu, Chaoneng ; Zou, Yunzeng ; Hu, Kai ; Ge, Junbo ; Sun, Aijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-82aeea5b9d465e6c56ec4f9186f4d7d9ea287431f642a230a9e4bed7ab75d7a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aged</topic><topic>Aldehyde Dehydrogenase, Mitochondrial - deficiency</topic><topic>Aldehyde Dehydrogenase, Mitochondrial - genetics</topic><topic>Aldehyde Dehydrogenase, Mitochondrial - metabolism</topic><topic>Aldehydes - metabolism</topic><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Diabetes Mellitus, Experimental - enzymology</topic><topic>Diabetes Mellitus, Experimental - metabolism</topic><topic>Diabetes Mellitus, Experimental - physiopathology</topic><topic>Diastole</topic><topic>Energy Metabolism</topic><topic>Female</topic><topic>Glucose - metabolism</topic><topic>Heart Function Tests</topic><topic>Heart Ventricles - pathology</topic><topic>Heart Ventricles - physiopathology</topic><topic>Heart Ventricles - ultrastructure</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Lipid Peroxidation</topic><topic>Male</topic><topic>Metabolomics</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mitochondria - enzymology</topic><topic>Molecular Medicine</topic><topic>Mutation - genetics</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - pathology</topic><topic>Original Article</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Cong</creatorcontrib><creatorcontrib>Fan, Fan</creatorcontrib><creatorcontrib>Cao, Quan</creatorcontrib><creatorcontrib>Shen, Cheng</creatorcontrib><creatorcontrib>Zhu, Hong</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Zhao, Xiaona</creatorcontrib><creatorcontrib>Sun, Xiaolei</creatorcontrib><creatorcontrib>Dong, Zhen</creatorcontrib><creatorcontrib>Ma, Xin</creatorcontrib><creatorcontrib>liu, Xiangwei</creatorcontrib><creatorcontrib>Han, Shasha</creatorcontrib><creatorcontrib>Wu, Chaoneng</creatorcontrib><creatorcontrib>Zou, Yunzeng</creatorcontrib><creatorcontrib>Hu, Kai</creatorcontrib><creatorcontrib>Ge, Junbo</creatorcontrib><creatorcontrib>Sun, Aijun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of molecular medicine (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Cong</au><au>Fan, Fan</au><au>Cao, Quan</au><au>Shen, Cheng</au><au>Zhu, Hong</au><au>Wang, Peng</au><au>Zhao, Xiaona</au><au>Sun, Xiaolei</au><au>Dong, Zhen</au><au>Ma, Xin</au><au>liu, Xiangwei</au><au>Han, Shasha</au><au>Wu, Chaoneng</au><au>Zou, Yunzeng</au><au>Hu, Kai</au><au>Ge, Junbo</au><au>Sun, Aijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial aldehyde dehydrogenase 2 deficiency aggravates energy metabolism disturbance and diastolic dysfunction in diabetic mice</atitle><jtitle>Journal of molecular medicine (Berlin, Germany)</jtitle><stitle>J Mol Med</stitle><addtitle>J Mol Med (Berl)</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>94</volume><issue>11</issue><spage>1229</spage><epage>1240</epage><pages>1229-1240</pages><issn>0946-2716</issn><eissn>1432-1440</eissn><abstract>Diabetes causes energy metabolism disturbance and may lead to cardiac dysfunction. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) protects cardiac function from myocardial damage. Therefore, understanding of its roles in diabetic heart is critical for developing new therapeutics targeting ALDH2 and mitochondrial function for diabetic hearts. This study investigated the impact of ALDH2 deficiency on diastolic function and energy metabolism in diabetic mice. Diabetes was induced in ALDH2 knockout and wild-type mice by streptozotocin. Cardiac function was determined by echocardiography. Glucose uptake, energy status, and metabolic profiles were used to evaluate cardiac energy metabolism. The association between ALDH2 polymorphism and diabetes was also analyzed in patients. Echocardiography revealed preserved systolic function and impaired diastolic function in diabetic ALDH2-deficient mice. Energy reserves (phosphocreatine/adenosine triphosphate ratio) were reduced in the diabetic mutants and were associated with diastolic dysfunction. Western blot analysis showed that diabetes induces accumulated lipid peroxidation products and escalated AMP-activated protein kinase–LKB1 pathway. Further, ALDH2 deficiency exacerbated the diabetes-induced deficient myocardial glucose uptake and other perturbations of metabolic profiles. Finally, ALDH2 mutations were associated with worse diastolic dysfunction in diabetic patients. Together, our results demonstrate that ALDH2 deficiency and resulting energy metabolism disturbance is a part of pathology of diastolic dysfunction of diabetic hearts, and suggest that patients with ALDH2 mutations are vulnerable to diabetic damage.
Key Message
ALDH2 deficiency exacerbates diastolic dysfunction in early diabetic hearts.
ALDH2 deficiency triggers decompensation of metabolic reserves and energy metabolism disturbances in early diabetic hearts.
ALDH2 deficiency potentiates oxidative stress and AMPK phosphorylation induced by diabetes via post-translational regulation of LKB1.
Diabetic patients with ALDH2 mutations are predisposed to worse diastolic dysfunction.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27488451</pmid><doi>10.1007/s00109-016-1449-5</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0946-2716 |
ispartof | Journal of molecular medicine (Berlin, Germany), 2016-11, Vol.94 (11), p.1229-1240 |
issn | 0946-2716 1432-1440 |
language | eng |
recordid | cdi_proquest_miscellaneous_1837293931 |
source | MEDLINE; SpringerNature Journals |
subjects | Aged Aldehyde Dehydrogenase, Mitochondrial - deficiency Aldehyde Dehydrogenase, Mitochondrial - genetics Aldehyde Dehydrogenase, Mitochondrial - metabolism Aldehydes - metabolism AMP-Activated Protein Kinases - metabolism Animals Biomedical and Life Sciences Biomedicine Diabetes Mellitus, Experimental - enzymology Diabetes Mellitus, Experimental - metabolism Diabetes Mellitus, Experimental - physiopathology Diastole Energy Metabolism Female Glucose - metabolism Heart Function Tests Heart Ventricles - pathology Heart Ventricles - physiopathology Heart Ventricles - ultrastructure Human Genetics Humans Internal Medicine Lipid Peroxidation Male Metabolomics Mice, Inbred C57BL Mice, Knockout Mitochondria - enzymology Molecular Medicine Mutation - genetics Myocardium - metabolism Myocardium - pathology Original Article Signal Transduction |
title | Mitochondrial aldehyde dehydrogenase 2 deficiency aggravates energy metabolism disturbance and diastolic dysfunction in diabetic mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A59%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20aldehyde%20dehydrogenase%202%20deficiency%20aggravates%20energy%20metabolism%20disturbance%20and%20diastolic%20dysfunction%20in%20diabetic%20mice&rft.jtitle=Journal%20of%20molecular%20medicine%20(Berlin,%20Germany)&rft.au=Wang,%20Cong&rft.date=2016-11-01&rft.volume=94&rft.issue=11&rft.spage=1229&rft.epage=1240&rft.pages=1229-1240&rft.issn=0946-2716&rft.eissn=1432-1440&rft_id=info:doi/10.1007/s00109-016-1449-5&rft_dat=%3Cproquest_cross%3E1837293931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1830016979&rft_id=info:pmid/27488451&rfr_iscdi=true |