Extreme calorie restriction in yeast retentostats induces uniform non-quiescent growth arrest

Non-dividing Saccharomyces cerevisiae cultures are highly relevant for fundamental and applied studies. However, cultivation conditions in which non-dividing cells retain substantial metabolic activity are lacking. Unlike stationary-phase (SP) batch cultures, the current experimental paradigm for no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Molecular cell research 2017-01, Vol.1864 (1), p.231-242
Hauptverfasser: Bisschops, Markus M M, Luttik, Marijke A H, Doerr, Anne, Verheijen, Peter J T, Bruggeman, Frank, Pronk, Jack T, Daran-Lapujade, Pascale
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 242
container_issue 1
container_start_page 231
container_title Biochimica et biophysica acta. Molecular cell research
container_volume 1864
creator Bisschops, Markus M M
Luttik, Marijke A H
Doerr, Anne
Verheijen, Peter J T
Bruggeman, Frank
Pronk, Jack T
Daran-Lapujade, Pascale
description Non-dividing Saccharomyces cerevisiae cultures are highly relevant for fundamental and applied studies. However, cultivation conditions in which non-dividing cells retain substantial metabolic activity are lacking. Unlike stationary-phase (SP) batch cultures, the current experimental paradigm for non-dividing yeast cultures, cultivation under extreme calorie restriction (ECR) in retentostat enables non-dividing yeast cells to retain substantial metabolic activity and to prevent rapid cellular deterioration. Distribution of F-actin structures and single-cell copy numbers of specific transcripts revealed that cultivation under ECR yields highly homogeneous cultures, in contrast to SP cultures that differentiate into quiescent and non-quiescent subpopulations. Combined with previous physiological studies, these results indicate that yeast cells subjected to ECR survive in an extended G phase. This study demonstrates that yeast cells exposed to ECR differ from carbon-starved cells and offer a promising experimental model for studying non-dividing, metabolically active, and robust eukaryotic cells.
doi_str_mv 10.1016/j.bbamcr.2016.11.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837031223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1837031223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-36fcf6c34000fb78b6a3749f7908dd44fb10015ddc18d71c3091c3efd624a7fb3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhnMAsTH4BwjlyKUlabImPaJpfEiTuMARRWk-IFPbbEkq2L8nUwc-2LL1vrb1AHCDUYkRru-3ZdvKXoWyyl2JcYlQdQbmuWEF5byZgcsYtygHZcsLMKsYx7xiZA4-1j8pmN5AJTsfnIHBxBScSs4P0A3wYGRMeZjMkHxMMsU81aMyEY6Dsz70cPBDsR-diSpr4Gfw3-kLynBcdAXOreyiuT7VBXh_XL-tnovN69PL6mFTKIJYKkhtla0VoflB2zLe1pIw2ljWIK41pbbFCOGl1gpzzXA2NTkZq-uKSmZbsgB3095d8PsxHxa9y-90nRyMH6PAnDBEcFWRLKWTVAUfYzBW7ILrZTgIjMQRptiKCaY4whQYiwwz225PF8a2N_rf9EeS_ALcZHZo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837031223</pqid></control><display><type>article</type><title>Extreme calorie restriction in yeast retentostats induces uniform non-quiescent growth arrest</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bisschops, Markus M M ; Luttik, Marijke A H ; Doerr, Anne ; Verheijen, Peter J T ; Bruggeman, Frank ; Pronk, Jack T ; Daran-Lapujade, Pascale</creator><creatorcontrib>Bisschops, Markus M M ; Luttik, Marijke A H ; Doerr, Anne ; Verheijen, Peter J T ; Bruggeman, Frank ; Pronk, Jack T ; Daran-Lapujade, Pascale</creatorcontrib><description>Non-dividing Saccharomyces cerevisiae cultures are highly relevant for fundamental and applied studies. However, cultivation conditions in which non-dividing cells retain substantial metabolic activity are lacking. Unlike stationary-phase (SP) batch cultures, the current experimental paradigm for non-dividing yeast cultures, cultivation under extreme calorie restriction (ECR) in retentostat enables non-dividing yeast cells to retain substantial metabolic activity and to prevent rapid cellular deterioration. Distribution of F-actin structures and single-cell copy numbers of specific transcripts revealed that cultivation under ECR yields highly homogeneous cultures, in contrast to SP cultures that differentiate into quiescent and non-quiescent subpopulations. Combined with previous physiological studies, these results indicate that yeast cells subjected to ECR survive in an extended G phase. This study demonstrates that yeast cells exposed to ECR differ from carbon-starved cells and offer a promising experimental model for studying non-dividing, metabolically active, and robust eukaryotic cells.</description><identifier>ISSN: 0167-4889</identifier><identifier>DOI: 10.1016/j.bbamcr.2016.11.002</identifier><identifier>PMID: 27818273</identifier><language>eng</language><publisher>Netherlands</publisher><subject>Actins - genetics ; Actins - metabolism ; Batch Cell Culture Techniques ; Bioreactors ; Cell Cycle Checkpoints - genetics ; Culture Media - chemistry ; Energy Metabolism - genetics ; Gene Expression Regulation, Fungal ; Glucose - deficiency ; Heat-Shock Proteins - genetics ; Heat-Shock Proteins - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism</subject><ispartof>Biochimica et biophysica acta. Molecular cell research, 2017-01, Vol.1864 (1), p.231-242</ispartof><rights>Copyright © 2016 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-36fcf6c34000fb78b6a3749f7908dd44fb10015ddc18d71c3091c3efd624a7fb3</citedby><cites>FETCH-LOGICAL-c307t-36fcf6c34000fb78b6a3749f7908dd44fb10015ddc18d71c3091c3efd624a7fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27818273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bisschops, Markus M M</creatorcontrib><creatorcontrib>Luttik, Marijke A H</creatorcontrib><creatorcontrib>Doerr, Anne</creatorcontrib><creatorcontrib>Verheijen, Peter J T</creatorcontrib><creatorcontrib>Bruggeman, Frank</creatorcontrib><creatorcontrib>Pronk, Jack T</creatorcontrib><creatorcontrib>Daran-Lapujade, Pascale</creatorcontrib><title>Extreme calorie restriction in yeast retentostats induces uniform non-quiescent growth arrest</title><title>Biochimica et biophysica acta. Molecular cell research</title><addtitle>Biochim Biophys Acta Mol Cell Res</addtitle><description>Non-dividing Saccharomyces cerevisiae cultures are highly relevant for fundamental and applied studies. However, cultivation conditions in which non-dividing cells retain substantial metabolic activity are lacking. Unlike stationary-phase (SP) batch cultures, the current experimental paradigm for non-dividing yeast cultures, cultivation under extreme calorie restriction (ECR) in retentostat enables non-dividing yeast cells to retain substantial metabolic activity and to prevent rapid cellular deterioration. Distribution of F-actin structures and single-cell copy numbers of specific transcripts revealed that cultivation under ECR yields highly homogeneous cultures, in contrast to SP cultures that differentiate into quiescent and non-quiescent subpopulations. Combined with previous physiological studies, these results indicate that yeast cells subjected to ECR survive in an extended G phase. This study demonstrates that yeast cells exposed to ECR differ from carbon-starved cells and offer a promising experimental model for studying non-dividing, metabolically active, and robust eukaryotic cells.</description><subject>Actins - genetics</subject><subject>Actins - metabolism</subject><subject>Batch Cell Culture Techniques</subject><subject>Bioreactors</subject><subject>Cell Cycle Checkpoints - genetics</subject><subject>Culture Media - chemistry</subject><subject>Energy Metabolism - genetics</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Glucose - deficiency</subject><subject>Heat-Shock Proteins - genetics</subject><subject>Heat-Shock Proteins - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><issn>0167-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE1PwzAMhnMAsTH4BwjlyKUlabImPaJpfEiTuMARRWk-IFPbbEkq2L8nUwc-2LL1vrb1AHCDUYkRru-3ZdvKXoWyyl2JcYlQdQbmuWEF5byZgcsYtygHZcsLMKsYx7xiZA4-1j8pmN5AJTsfnIHBxBScSs4P0A3wYGRMeZjMkHxMMsU81aMyEY6Dsz70cPBDsR-diSpr4Gfw3-kLynBcdAXOreyiuT7VBXh_XL-tnovN69PL6mFTKIJYKkhtla0VoflB2zLe1pIw2ljWIK41pbbFCOGl1gpzzXA2NTkZq-uKSmZbsgB3095d8PsxHxa9y-90nRyMH6PAnDBEcFWRLKWTVAUfYzBW7ILrZTgIjMQRptiKCaY4whQYiwwz225PF8a2N_rf9EeS_ALcZHZo</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Bisschops, Markus M M</creator><creator>Luttik, Marijke A H</creator><creator>Doerr, Anne</creator><creator>Verheijen, Peter J T</creator><creator>Bruggeman, Frank</creator><creator>Pronk, Jack T</creator><creator>Daran-Lapujade, Pascale</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201701</creationdate><title>Extreme calorie restriction in yeast retentostats induces uniform non-quiescent growth arrest</title><author>Bisschops, Markus M M ; Luttik, Marijke A H ; Doerr, Anne ; Verheijen, Peter J T ; Bruggeman, Frank ; Pronk, Jack T ; Daran-Lapujade, Pascale</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-36fcf6c34000fb78b6a3749f7908dd44fb10015ddc18d71c3091c3efd624a7fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Actins - genetics</topic><topic>Actins - metabolism</topic><topic>Batch Cell Culture Techniques</topic><topic>Bioreactors</topic><topic>Cell Cycle Checkpoints - genetics</topic><topic>Culture Media - chemistry</topic><topic>Energy Metabolism - genetics</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Glucose - deficiency</topic><topic>Heat-Shock Proteins - genetics</topic><topic>Heat-Shock Proteins - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bisschops, Markus M M</creatorcontrib><creatorcontrib>Luttik, Marijke A H</creatorcontrib><creatorcontrib>Doerr, Anne</creatorcontrib><creatorcontrib>Verheijen, Peter J T</creatorcontrib><creatorcontrib>Bruggeman, Frank</creatorcontrib><creatorcontrib>Pronk, Jack T</creatorcontrib><creatorcontrib>Daran-Lapujade, Pascale</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochimica et biophysica acta. Molecular cell research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bisschops, Markus M M</au><au>Luttik, Marijke A H</au><au>Doerr, Anne</au><au>Verheijen, Peter J T</au><au>Bruggeman, Frank</au><au>Pronk, Jack T</au><au>Daran-Lapujade, Pascale</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extreme calorie restriction in yeast retentostats induces uniform non-quiescent growth arrest</atitle><jtitle>Biochimica et biophysica acta. Molecular cell research</jtitle><addtitle>Biochim Biophys Acta Mol Cell Res</addtitle><date>2017-01</date><risdate>2017</risdate><volume>1864</volume><issue>1</issue><spage>231</spage><epage>242</epage><pages>231-242</pages><issn>0167-4889</issn><abstract>Non-dividing Saccharomyces cerevisiae cultures are highly relevant for fundamental and applied studies. However, cultivation conditions in which non-dividing cells retain substantial metabolic activity are lacking. Unlike stationary-phase (SP) batch cultures, the current experimental paradigm for non-dividing yeast cultures, cultivation under extreme calorie restriction (ECR) in retentostat enables non-dividing yeast cells to retain substantial metabolic activity and to prevent rapid cellular deterioration. Distribution of F-actin structures and single-cell copy numbers of specific transcripts revealed that cultivation under ECR yields highly homogeneous cultures, in contrast to SP cultures that differentiate into quiescent and non-quiescent subpopulations. Combined with previous physiological studies, these results indicate that yeast cells subjected to ECR survive in an extended G phase. This study demonstrates that yeast cells exposed to ECR differ from carbon-starved cells and offer a promising experimental model for studying non-dividing, metabolically active, and robust eukaryotic cells.</abstract><cop>Netherlands</cop><pmid>27818273</pmid><doi>10.1016/j.bbamcr.2016.11.002</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-4889
ispartof Biochimica et biophysica acta. Molecular cell research, 2017-01, Vol.1864 (1), p.231-242
issn 0167-4889
language eng
recordid cdi_proquest_miscellaneous_1837031223
source MEDLINE; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Actins - genetics
Actins - metabolism
Batch Cell Culture Techniques
Bioreactors
Cell Cycle Checkpoints - genetics
Culture Media - chemistry
Energy Metabolism - genetics
Gene Expression Regulation, Fungal
Glucose - deficiency
Heat-Shock Proteins - genetics
Heat-Shock Proteins - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
title Extreme calorie restriction in yeast retentostats induces uniform non-quiescent growth arrest
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A36%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extreme%20calorie%20restriction%20in%20yeast%20retentostats%20induces%20uniform%20non-quiescent%20growth%20arrest&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20Molecular%20cell%20research&rft.au=Bisschops,%20Markus%20M%20M&rft.date=2017-01&rft.volume=1864&rft.issue=1&rft.spage=231&rft.epage=242&rft.pages=231-242&rft.issn=0167-4889&rft_id=info:doi/10.1016/j.bbamcr.2016.11.002&rft_dat=%3Cproquest_cross%3E1837031223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1837031223&rft_id=info:pmid/27818273&rfr_iscdi=true