Adipocyte Ceramides Regulate Subcutaneous Adipose Browning, Inflammation, and Metabolism

Adipocytes package incoming fatty acids into triglycerides and other glycerolipids, with only a fraction spilling into a parallel biosynthetic pathway that produces sphingolipids. Herein, we demonstrate that subcutaneous adipose tissue of type 2 diabetics contains considerably more sphingolipids tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell metabolism 2016-12, Vol.24 (6), p.820-834
Hauptverfasser: Chaurasia, Bhagirath, Kaddai, Vincent Andre, Lancaster, Graeme Iain, Henstridge, Darren C., Sriram, Sandhya, Galam, Dwight Lark Anolin, Gopalan, Venkatesh, Prakash, K.N. Bhanu, Velan, S. Sendhil, Bulchand, Sarada, Tsong, Teh Jing, Wang, Mei, Siddique, Monowarul Mobin, Yuguang, Guan, Sigmundsson, Kristmundur, Mellet, Natalie A., Weir, Jacquelyn M., Meikle, Peter J., Bin M. Yassin, M. Shabeer, Shabbir, Asim, Shayman, James A., Hirabayashi, Yoshio, Shiow, Sue-Anne Toh Ee, Sugii, Shigeki, Summers, Scott A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 834
container_issue 6
container_start_page 820
container_title Cell metabolism
container_volume 24
creator Chaurasia, Bhagirath
Kaddai, Vincent Andre
Lancaster, Graeme Iain
Henstridge, Darren C.
Sriram, Sandhya
Galam, Dwight Lark Anolin
Gopalan, Venkatesh
Prakash, K.N. Bhanu
Velan, S. Sendhil
Bulchand, Sarada
Tsong, Teh Jing
Wang, Mei
Siddique, Monowarul Mobin
Yuguang, Guan
Sigmundsson, Kristmundur
Mellet, Natalie A.
Weir, Jacquelyn M.
Meikle, Peter J.
Bin M. Yassin, M. Shabeer
Shabbir, Asim
Shayman, James A.
Hirabayashi, Yoshio
Shiow, Sue-Anne Toh Ee
Sugii, Shigeki
Summers, Scott A.
description Adipocytes package incoming fatty acids into triglycerides and other glycerolipids, with only a fraction spilling into a parallel biosynthetic pathway that produces sphingolipids. Herein, we demonstrate that subcutaneous adipose tissue of type 2 diabetics contains considerably more sphingolipids than non-diabetic, BMI-matched counterparts. Whole-body and adipose tissue-specific inhibition/deletion of serine palmitoyltransferase (Sptlc), the first enzyme in the sphingolipid biosynthesis cascade, in mice markedly altered adipose morphology and metabolism, particularly in subcutaneous adipose tissue. The reduction in adipose sphingolipids increased brown and beige/brite adipocyte numbers, mitochondrial activity, and insulin sensitivity. The manipulation also increased numbers of anti-inflammatory M2 macrophages in the adipose bed and induced secretion of insulin-sensitizing adipokines. By comparison, deletion of serine palmitoyltransferase from macrophages had no discernible effects on metabolic homeostasis or adipose function. These data indicate that newly synthesized adipocyte sphingolipids are nutrient signals that drive changes in the adipose phenotype to influence whole-body energy expenditure and nutrient metabolism. [Display omitted] •Cold or β-adrenergic agonists selectively reduce adipose ceramides•Adipocyte-specific inhibition of ceramide synthesis induces adipose beiging•Ceramide effects on adipose metabolism are cell autonomous•Adipose sphingolipids increase in obesity and correlate with insulin resistance Chaurasia et al. show that whole-body and fat-specific inhibition of ceramide synthesis induces browning and increases M2 macrophages preferentially in subcutaneous WAT of obese mice. Adipose sphingolipids, increased by overnutrition and decreased by cold, modulate β-adrenergic-induced thermogenesis.
doi_str_mv 10.1016/j.cmet.2016.10.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837030297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1550413116305332</els_id><sourcerecordid>1837030297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-3101356afb8277e2e4dd3b02a064fff8ad126964d615872b04bb03de62f494c93</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMotlZfwIXM0kWn5jY3cFOLl0JF8ALuQiY5U1LmUpMZpW9vxqkuXeXw852fnA-hc4JnBJP4ajNTFbQz6mcfzDCmB2hMMkbDhFN86OcowiEnjIzQiXMbjFnMMnaMRjRJSUqjdIze59psG7VrIViAlZXR4IJnWHel9NFLl6uulTU0nQt-SAfBjW2-alOvp8GyLkpZVbI1TT0NZK2DR2hl3pTGVafoqJClg7P9O0Fvd7evi4dw9XS_XMxXoeI4akPmL2FRLIs8pUkCFLjWLMdU4pgXRZFKTWicxVzHJEoTmmOe55hpiGnBM64yNkGXQ-_WNh8duFZUxikoy-HXgqQswQzTLPEoHVBlG-csFGJrTSXtThAseqNiI3qjojfaZ96oX7rY93d5Bfpv5VehB64HAPyVnwascMpArUAbC6oVujH_9X8D8-OHIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837030297</pqid></control><display><type>article</type><title>Adipocyte Ceramides Regulate Subcutaneous Adipose Browning, Inflammation, and Metabolism</title><source>MEDLINE</source><source>Open Access: Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB Electronic Journals Library</source><creator>Chaurasia, Bhagirath ; Kaddai, Vincent Andre ; Lancaster, Graeme Iain ; Henstridge, Darren C. ; Sriram, Sandhya ; Galam, Dwight Lark Anolin ; Gopalan, Venkatesh ; Prakash, K.N. Bhanu ; Velan, S. Sendhil ; Bulchand, Sarada ; Tsong, Teh Jing ; Wang, Mei ; Siddique, Monowarul Mobin ; Yuguang, Guan ; Sigmundsson, Kristmundur ; Mellet, Natalie A. ; Weir, Jacquelyn M. ; Meikle, Peter J. ; Bin M. Yassin, M. Shabeer ; Shabbir, Asim ; Shayman, James A. ; Hirabayashi, Yoshio ; Shiow, Sue-Anne Toh Ee ; Sugii, Shigeki ; Summers, Scott A.</creator><creatorcontrib>Chaurasia, Bhagirath ; Kaddai, Vincent Andre ; Lancaster, Graeme Iain ; Henstridge, Darren C. ; Sriram, Sandhya ; Galam, Dwight Lark Anolin ; Gopalan, Venkatesh ; Prakash, K.N. Bhanu ; Velan, S. Sendhil ; Bulchand, Sarada ; Tsong, Teh Jing ; Wang, Mei ; Siddique, Monowarul Mobin ; Yuguang, Guan ; Sigmundsson, Kristmundur ; Mellet, Natalie A. ; Weir, Jacquelyn M. ; Meikle, Peter J. ; Bin M. Yassin, M. Shabeer ; Shabbir, Asim ; Shayman, James A. ; Hirabayashi, Yoshio ; Shiow, Sue-Anne Toh Ee ; Sugii, Shigeki ; Summers, Scott A.</creatorcontrib><description>Adipocytes package incoming fatty acids into triglycerides and other glycerolipids, with only a fraction spilling into a parallel biosynthetic pathway that produces sphingolipids. Herein, we demonstrate that subcutaneous adipose tissue of type 2 diabetics contains considerably more sphingolipids than non-diabetic, BMI-matched counterparts. Whole-body and adipose tissue-specific inhibition/deletion of serine palmitoyltransferase (Sptlc), the first enzyme in the sphingolipid biosynthesis cascade, in mice markedly altered adipose morphology and metabolism, particularly in subcutaneous adipose tissue. The reduction in adipose sphingolipids increased brown and beige/brite adipocyte numbers, mitochondrial activity, and insulin sensitivity. The manipulation also increased numbers of anti-inflammatory M2 macrophages in the adipose bed and induced secretion of insulin-sensitizing adipokines. By comparison, deletion of serine palmitoyltransferase from macrophages had no discernible effects on metabolic homeostasis or adipose function. These data indicate that newly synthesized adipocyte sphingolipids are nutrient signals that drive changes in the adipose phenotype to influence whole-body energy expenditure and nutrient metabolism. [Display omitted] •Cold or β-adrenergic agonists selectively reduce adipose ceramides•Adipocyte-specific inhibition of ceramide synthesis induces adipose beiging•Ceramide effects on adipose metabolism are cell autonomous•Adipose sphingolipids increase in obesity and correlate with insulin resistance Chaurasia et al. show that whole-body and fat-specific inhibition of ceramide synthesis induces browning and increases M2 macrophages preferentially in subcutaneous WAT of obese mice. Adipose sphingolipids, increased by overnutrition and decreased by cold, modulate β-adrenergic-induced thermogenesis.</description><identifier>ISSN: 1550-4131</identifier><identifier>EISSN: 1932-7420</identifier><identifier>DOI: 10.1016/j.cmet.2016.10.002</identifier><identifier>PMID: 27818258</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adipocytes - drug effects ; Adipocytes - metabolism ; Adipose Tissue, Brown - drug effects ; Adipose Tissue, Brown - metabolism ; Adipose Tissue, Brown - pathology ; Adrenergic beta-Agonists - pharmacology ; Adult ; Aged ; Animals ; Body Mass Index ; Cell Differentiation - drug effects ; Cell Differentiation - genetics ; Ceramides - pharmacology ; Cold Temperature ; Diabetes Mellitus - metabolism ; Dioxoles - pharmacology ; Energy Metabolism - drug effects ; Fatty Liver - metabolism ; Fatty Liver - pathology ; Gene Deletion ; Gene Expression Regulation - drug effects ; Glucose - metabolism ; Humans ; Inflammation - genetics ; Inflammation - pathology ; Mice ; Middle Aged ; Obesity - metabolism ; Obesity - pathology ; Organ Specificity - drug effects ; Serine C-Palmitoyltransferase - metabolism ; Sphingolipids - biosynthesis ; Sphingolipids - metabolism ; Subcutaneous Fat - drug effects ; Subcutaneous Fat - metabolism ; Subcutaneous Fat - pathology ; Thermogenesis - drug effects ; Thermogenesis - genetics ; Young Adult</subject><ispartof>Cell metabolism, 2016-12, Vol.24 (6), p.820-834</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-3101356afb8277e2e4dd3b02a064fff8ad126964d615872b04bb03de62f494c93</citedby><cites>FETCH-LOGICAL-c405t-3101356afb8277e2e4dd3b02a064fff8ad126964d615872b04bb03de62f494c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1550413116305332$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27818258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chaurasia, Bhagirath</creatorcontrib><creatorcontrib>Kaddai, Vincent Andre</creatorcontrib><creatorcontrib>Lancaster, Graeme Iain</creatorcontrib><creatorcontrib>Henstridge, Darren C.</creatorcontrib><creatorcontrib>Sriram, Sandhya</creatorcontrib><creatorcontrib>Galam, Dwight Lark Anolin</creatorcontrib><creatorcontrib>Gopalan, Venkatesh</creatorcontrib><creatorcontrib>Prakash, K.N. Bhanu</creatorcontrib><creatorcontrib>Velan, S. Sendhil</creatorcontrib><creatorcontrib>Bulchand, Sarada</creatorcontrib><creatorcontrib>Tsong, Teh Jing</creatorcontrib><creatorcontrib>Wang, Mei</creatorcontrib><creatorcontrib>Siddique, Monowarul Mobin</creatorcontrib><creatorcontrib>Yuguang, Guan</creatorcontrib><creatorcontrib>Sigmundsson, Kristmundur</creatorcontrib><creatorcontrib>Mellet, Natalie A.</creatorcontrib><creatorcontrib>Weir, Jacquelyn M.</creatorcontrib><creatorcontrib>Meikle, Peter J.</creatorcontrib><creatorcontrib>Bin M. Yassin, M. Shabeer</creatorcontrib><creatorcontrib>Shabbir, Asim</creatorcontrib><creatorcontrib>Shayman, James A.</creatorcontrib><creatorcontrib>Hirabayashi, Yoshio</creatorcontrib><creatorcontrib>Shiow, Sue-Anne Toh Ee</creatorcontrib><creatorcontrib>Sugii, Shigeki</creatorcontrib><creatorcontrib>Summers, Scott A.</creatorcontrib><title>Adipocyte Ceramides Regulate Subcutaneous Adipose Browning, Inflammation, and Metabolism</title><title>Cell metabolism</title><addtitle>Cell Metab</addtitle><description>Adipocytes package incoming fatty acids into triglycerides and other glycerolipids, with only a fraction spilling into a parallel biosynthetic pathway that produces sphingolipids. Herein, we demonstrate that subcutaneous adipose tissue of type 2 diabetics contains considerably more sphingolipids than non-diabetic, BMI-matched counterparts. Whole-body and adipose tissue-specific inhibition/deletion of serine palmitoyltransferase (Sptlc), the first enzyme in the sphingolipid biosynthesis cascade, in mice markedly altered adipose morphology and metabolism, particularly in subcutaneous adipose tissue. The reduction in adipose sphingolipids increased brown and beige/brite adipocyte numbers, mitochondrial activity, and insulin sensitivity. The manipulation also increased numbers of anti-inflammatory M2 macrophages in the adipose bed and induced secretion of insulin-sensitizing adipokines. By comparison, deletion of serine palmitoyltransferase from macrophages had no discernible effects on metabolic homeostasis or adipose function. These data indicate that newly synthesized adipocyte sphingolipids are nutrient signals that drive changes in the adipose phenotype to influence whole-body energy expenditure and nutrient metabolism. [Display omitted] •Cold or β-adrenergic agonists selectively reduce adipose ceramides•Adipocyte-specific inhibition of ceramide synthesis induces adipose beiging•Ceramide effects on adipose metabolism are cell autonomous•Adipose sphingolipids increase in obesity and correlate with insulin resistance Chaurasia et al. show that whole-body and fat-specific inhibition of ceramide synthesis induces browning and increases M2 macrophages preferentially in subcutaneous WAT of obese mice. Adipose sphingolipids, increased by overnutrition and decreased by cold, modulate β-adrenergic-induced thermogenesis.</description><subject>Adipocytes - drug effects</subject><subject>Adipocytes - metabolism</subject><subject>Adipose Tissue, Brown - drug effects</subject><subject>Adipose Tissue, Brown - metabolism</subject><subject>Adipose Tissue, Brown - pathology</subject><subject>Adrenergic beta-Agonists - pharmacology</subject><subject>Adult</subject><subject>Aged</subject><subject>Animals</subject><subject>Body Mass Index</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Differentiation - genetics</subject><subject>Ceramides - pharmacology</subject><subject>Cold Temperature</subject><subject>Diabetes Mellitus - metabolism</subject><subject>Dioxoles - pharmacology</subject><subject>Energy Metabolism - drug effects</subject><subject>Fatty Liver - metabolism</subject><subject>Fatty Liver - pathology</subject><subject>Gene Deletion</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Glucose - metabolism</subject><subject>Humans</subject><subject>Inflammation - genetics</subject><subject>Inflammation - pathology</subject><subject>Mice</subject><subject>Middle Aged</subject><subject>Obesity - metabolism</subject><subject>Obesity - pathology</subject><subject>Organ Specificity - drug effects</subject><subject>Serine C-Palmitoyltransferase - metabolism</subject><subject>Sphingolipids - biosynthesis</subject><subject>Sphingolipids - metabolism</subject><subject>Subcutaneous Fat - drug effects</subject><subject>Subcutaneous Fat - metabolism</subject><subject>Subcutaneous Fat - pathology</subject><subject>Thermogenesis - drug effects</subject><subject>Thermogenesis - genetics</subject><subject>Young Adult</subject><issn>1550-4131</issn><issn>1932-7420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKAzEUhoMotlZfwIXM0kWn5jY3cFOLl0JF8ALuQiY5U1LmUpMZpW9vxqkuXeXw852fnA-hc4JnBJP4ajNTFbQz6mcfzDCmB2hMMkbDhFN86OcowiEnjIzQiXMbjFnMMnaMRjRJSUqjdIze59psG7VrIViAlZXR4IJnWHel9NFLl6uulTU0nQt-SAfBjW2-alOvp8GyLkpZVbI1TT0NZK2DR2hl3pTGVafoqJClg7P9O0Fvd7evi4dw9XS_XMxXoeI4akPmL2FRLIs8pUkCFLjWLMdU4pgXRZFKTWicxVzHJEoTmmOe55hpiGnBM64yNkGXQ-_WNh8duFZUxikoy-HXgqQswQzTLPEoHVBlG-csFGJrTSXtThAseqNiI3qjojfaZ96oX7rY93d5Bfpv5VehB64HAPyVnwascMpArUAbC6oVujH_9X8D8-OHIg</recordid><startdate>20161213</startdate><enddate>20161213</enddate><creator>Chaurasia, Bhagirath</creator><creator>Kaddai, Vincent Andre</creator><creator>Lancaster, Graeme Iain</creator><creator>Henstridge, Darren C.</creator><creator>Sriram, Sandhya</creator><creator>Galam, Dwight Lark Anolin</creator><creator>Gopalan, Venkatesh</creator><creator>Prakash, K.N. Bhanu</creator><creator>Velan, S. Sendhil</creator><creator>Bulchand, Sarada</creator><creator>Tsong, Teh Jing</creator><creator>Wang, Mei</creator><creator>Siddique, Monowarul Mobin</creator><creator>Yuguang, Guan</creator><creator>Sigmundsson, Kristmundur</creator><creator>Mellet, Natalie A.</creator><creator>Weir, Jacquelyn M.</creator><creator>Meikle, Peter J.</creator><creator>Bin M. Yassin, M. Shabeer</creator><creator>Shabbir, Asim</creator><creator>Shayman, James A.</creator><creator>Hirabayashi, Yoshio</creator><creator>Shiow, Sue-Anne Toh Ee</creator><creator>Sugii, Shigeki</creator><creator>Summers, Scott A.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161213</creationdate><title>Adipocyte Ceramides Regulate Subcutaneous Adipose Browning, Inflammation, and Metabolism</title><author>Chaurasia, Bhagirath ; Kaddai, Vincent Andre ; Lancaster, Graeme Iain ; Henstridge, Darren C. ; Sriram, Sandhya ; Galam, Dwight Lark Anolin ; Gopalan, Venkatesh ; Prakash, K.N. Bhanu ; Velan, S. Sendhil ; Bulchand, Sarada ; Tsong, Teh Jing ; Wang, Mei ; Siddique, Monowarul Mobin ; Yuguang, Guan ; Sigmundsson, Kristmundur ; Mellet, Natalie A. ; Weir, Jacquelyn M. ; Meikle, Peter J. ; Bin M. Yassin, M. Shabeer ; Shabbir, Asim ; Shayman, James A. ; Hirabayashi, Yoshio ; Shiow, Sue-Anne Toh Ee ; Sugii, Shigeki ; Summers, Scott A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-3101356afb8277e2e4dd3b02a064fff8ad126964d615872b04bb03de62f494c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adipocytes - drug effects</topic><topic>Adipocytes - metabolism</topic><topic>Adipose Tissue, Brown - drug effects</topic><topic>Adipose Tissue, Brown - metabolism</topic><topic>Adipose Tissue, Brown - pathology</topic><topic>Adrenergic beta-Agonists - pharmacology</topic><topic>Adult</topic><topic>Aged</topic><topic>Animals</topic><topic>Body Mass Index</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Differentiation - genetics</topic><topic>Ceramides - pharmacology</topic><topic>Cold Temperature</topic><topic>Diabetes Mellitus - metabolism</topic><topic>Dioxoles - pharmacology</topic><topic>Energy Metabolism - drug effects</topic><topic>Fatty Liver - metabolism</topic><topic>Fatty Liver - pathology</topic><topic>Gene Deletion</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Glucose - metabolism</topic><topic>Humans</topic><topic>Inflammation - genetics</topic><topic>Inflammation - pathology</topic><topic>Mice</topic><topic>Middle Aged</topic><topic>Obesity - metabolism</topic><topic>Obesity - pathology</topic><topic>Organ Specificity - drug effects</topic><topic>Serine C-Palmitoyltransferase - metabolism</topic><topic>Sphingolipids - biosynthesis</topic><topic>Sphingolipids - metabolism</topic><topic>Subcutaneous Fat - drug effects</topic><topic>Subcutaneous Fat - metabolism</topic><topic>Subcutaneous Fat - pathology</topic><topic>Thermogenesis - drug effects</topic><topic>Thermogenesis - genetics</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaurasia, Bhagirath</creatorcontrib><creatorcontrib>Kaddai, Vincent Andre</creatorcontrib><creatorcontrib>Lancaster, Graeme Iain</creatorcontrib><creatorcontrib>Henstridge, Darren C.</creatorcontrib><creatorcontrib>Sriram, Sandhya</creatorcontrib><creatorcontrib>Galam, Dwight Lark Anolin</creatorcontrib><creatorcontrib>Gopalan, Venkatesh</creatorcontrib><creatorcontrib>Prakash, K.N. Bhanu</creatorcontrib><creatorcontrib>Velan, S. Sendhil</creatorcontrib><creatorcontrib>Bulchand, Sarada</creatorcontrib><creatorcontrib>Tsong, Teh Jing</creatorcontrib><creatorcontrib>Wang, Mei</creatorcontrib><creatorcontrib>Siddique, Monowarul Mobin</creatorcontrib><creatorcontrib>Yuguang, Guan</creatorcontrib><creatorcontrib>Sigmundsson, Kristmundur</creatorcontrib><creatorcontrib>Mellet, Natalie A.</creatorcontrib><creatorcontrib>Weir, Jacquelyn M.</creatorcontrib><creatorcontrib>Meikle, Peter J.</creatorcontrib><creatorcontrib>Bin M. Yassin, M. Shabeer</creatorcontrib><creatorcontrib>Shabbir, Asim</creatorcontrib><creatorcontrib>Shayman, James A.</creatorcontrib><creatorcontrib>Hirabayashi, Yoshio</creatorcontrib><creatorcontrib>Shiow, Sue-Anne Toh Ee</creatorcontrib><creatorcontrib>Sugii, Shigeki</creatorcontrib><creatorcontrib>Summers, Scott A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaurasia, Bhagirath</au><au>Kaddai, Vincent Andre</au><au>Lancaster, Graeme Iain</au><au>Henstridge, Darren C.</au><au>Sriram, Sandhya</au><au>Galam, Dwight Lark Anolin</au><au>Gopalan, Venkatesh</au><au>Prakash, K.N. Bhanu</au><au>Velan, S. Sendhil</au><au>Bulchand, Sarada</au><au>Tsong, Teh Jing</au><au>Wang, Mei</au><au>Siddique, Monowarul Mobin</au><au>Yuguang, Guan</au><au>Sigmundsson, Kristmundur</au><au>Mellet, Natalie A.</au><au>Weir, Jacquelyn M.</au><au>Meikle, Peter J.</au><au>Bin M. Yassin, M. Shabeer</au><au>Shabbir, Asim</au><au>Shayman, James A.</au><au>Hirabayashi, Yoshio</au><au>Shiow, Sue-Anne Toh Ee</au><au>Sugii, Shigeki</au><au>Summers, Scott A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adipocyte Ceramides Regulate Subcutaneous Adipose Browning, Inflammation, and Metabolism</atitle><jtitle>Cell metabolism</jtitle><addtitle>Cell Metab</addtitle><date>2016-12-13</date><risdate>2016</risdate><volume>24</volume><issue>6</issue><spage>820</spage><epage>834</epage><pages>820-834</pages><issn>1550-4131</issn><eissn>1932-7420</eissn><abstract>Adipocytes package incoming fatty acids into triglycerides and other glycerolipids, with only a fraction spilling into a parallel biosynthetic pathway that produces sphingolipids. Herein, we demonstrate that subcutaneous adipose tissue of type 2 diabetics contains considerably more sphingolipids than non-diabetic, BMI-matched counterparts. Whole-body and adipose tissue-specific inhibition/deletion of serine palmitoyltransferase (Sptlc), the first enzyme in the sphingolipid biosynthesis cascade, in mice markedly altered adipose morphology and metabolism, particularly in subcutaneous adipose tissue. The reduction in adipose sphingolipids increased brown and beige/brite adipocyte numbers, mitochondrial activity, and insulin sensitivity. The manipulation also increased numbers of anti-inflammatory M2 macrophages in the adipose bed and induced secretion of insulin-sensitizing adipokines. By comparison, deletion of serine palmitoyltransferase from macrophages had no discernible effects on metabolic homeostasis or adipose function. These data indicate that newly synthesized adipocyte sphingolipids are nutrient signals that drive changes in the adipose phenotype to influence whole-body energy expenditure and nutrient metabolism. [Display omitted] •Cold or β-adrenergic agonists selectively reduce adipose ceramides•Adipocyte-specific inhibition of ceramide synthesis induces adipose beiging•Ceramide effects on adipose metabolism are cell autonomous•Adipose sphingolipids increase in obesity and correlate with insulin resistance Chaurasia et al. show that whole-body and fat-specific inhibition of ceramide synthesis induces browning and increases M2 macrophages preferentially in subcutaneous WAT of obese mice. Adipose sphingolipids, increased by overnutrition and decreased by cold, modulate β-adrenergic-induced thermogenesis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27818258</pmid><doi>10.1016/j.cmet.2016.10.002</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1550-4131
ispartof Cell metabolism, 2016-12, Vol.24 (6), p.820-834
issn 1550-4131
1932-7420
language eng
recordid cdi_proquest_miscellaneous_1837030297
source MEDLINE; Open Access: Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB Electronic Journals Library
subjects Adipocytes - drug effects
Adipocytes - metabolism
Adipose Tissue, Brown - drug effects
Adipose Tissue, Brown - metabolism
Adipose Tissue, Brown - pathology
Adrenergic beta-Agonists - pharmacology
Adult
Aged
Animals
Body Mass Index
Cell Differentiation - drug effects
Cell Differentiation - genetics
Ceramides - pharmacology
Cold Temperature
Diabetes Mellitus - metabolism
Dioxoles - pharmacology
Energy Metabolism - drug effects
Fatty Liver - metabolism
Fatty Liver - pathology
Gene Deletion
Gene Expression Regulation - drug effects
Glucose - metabolism
Humans
Inflammation - genetics
Inflammation - pathology
Mice
Middle Aged
Obesity - metabolism
Obesity - pathology
Organ Specificity - drug effects
Serine C-Palmitoyltransferase - metabolism
Sphingolipids - biosynthesis
Sphingolipids - metabolism
Subcutaneous Fat - drug effects
Subcutaneous Fat - metabolism
Subcutaneous Fat - pathology
Thermogenesis - drug effects
Thermogenesis - genetics
Young Adult
title Adipocyte Ceramides Regulate Subcutaneous Adipose Browning, Inflammation, and Metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adipocyte%20Ceramides%20Regulate%20Subcutaneous%20Adipose%20Browning,%20Inflammation,%20and%20Metabolism&rft.jtitle=Cell%20metabolism&rft.au=Chaurasia,%20Bhagirath&rft.date=2016-12-13&rft.volume=24&rft.issue=6&rft.spage=820&rft.epage=834&rft.pages=820-834&rft.issn=1550-4131&rft.eissn=1932-7420&rft_id=info:doi/10.1016/j.cmet.2016.10.002&rft_dat=%3Cproquest_cross%3E1837030297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1837030297&rft_id=info:pmid/27818258&rft_els_id=S1550413116305332&rfr_iscdi=true