Adipocyte Ceramides Regulate Subcutaneous Adipose Browning, Inflammation, and Metabolism
Adipocytes package incoming fatty acids into triglycerides and other glycerolipids, with only a fraction spilling into a parallel biosynthetic pathway that produces sphingolipids. Herein, we demonstrate that subcutaneous adipose tissue of type 2 diabetics contains considerably more sphingolipids tha...
Gespeichert in:
Veröffentlicht in: | Cell metabolism 2016-12, Vol.24 (6), p.820-834 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 834 |
---|---|
container_issue | 6 |
container_start_page | 820 |
container_title | Cell metabolism |
container_volume | 24 |
creator | Chaurasia, Bhagirath Kaddai, Vincent Andre Lancaster, Graeme Iain Henstridge, Darren C. Sriram, Sandhya Galam, Dwight Lark Anolin Gopalan, Venkatesh Prakash, K.N. Bhanu Velan, S. Sendhil Bulchand, Sarada Tsong, Teh Jing Wang, Mei Siddique, Monowarul Mobin Yuguang, Guan Sigmundsson, Kristmundur Mellet, Natalie A. Weir, Jacquelyn M. Meikle, Peter J. Bin M. Yassin, M. Shabeer Shabbir, Asim Shayman, James A. Hirabayashi, Yoshio Shiow, Sue-Anne Toh Ee Sugii, Shigeki Summers, Scott A. |
description | Adipocytes package incoming fatty acids into triglycerides and other glycerolipids, with only a fraction spilling into a parallel biosynthetic pathway that produces sphingolipids. Herein, we demonstrate that subcutaneous adipose tissue of type 2 diabetics contains considerably more sphingolipids than non-diabetic, BMI-matched counterparts. Whole-body and adipose tissue-specific inhibition/deletion of serine palmitoyltransferase (Sptlc), the first enzyme in the sphingolipid biosynthesis cascade, in mice markedly altered adipose morphology and metabolism, particularly in subcutaneous adipose tissue. The reduction in adipose sphingolipids increased brown and beige/brite adipocyte numbers, mitochondrial activity, and insulin sensitivity. The manipulation also increased numbers of anti-inflammatory M2 macrophages in the adipose bed and induced secretion of insulin-sensitizing adipokines. By comparison, deletion of serine palmitoyltransferase from macrophages had no discernible effects on metabolic homeostasis or adipose function. These data indicate that newly synthesized adipocyte sphingolipids are nutrient signals that drive changes in the adipose phenotype to influence whole-body energy expenditure and nutrient metabolism.
[Display omitted]
•Cold or β-adrenergic agonists selectively reduce adipose ceramides•Adipocyte-specific inhibition of ceramide synthesis induces adipose beiging•Ceramide effects on adipose metabolism are cell autonomous•Adipose sphingolipids increase in obesity and correlate with insulin resistance
Chaurasia et al. show that whole-body and fat-specific inhibition of ceramide synthesis induces browning and increases M2 macrophages preferentially in subcutaneous WAT of obese mice. Adipose sphingolipids, increased by overnutrition and decreased by cold, modulate β-adrenergic-induced thermogenesis. |
doi_str_mv | 10.1016/j.cmet.2016.10.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837030297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1550413116305332</els_id><sourcerecordid>1837030297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-3101356afb8277e2e4dd3b02a064fff8ad126964d615872b04bb03de62f494c93</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMotlZfwIXM0kWn5jY3cFOLl0JF8ALuQiY5U1LmUpMZpW9vxqkuXeXw852fnA-hc4JnBJP4ajNTFbQz6mcfzDCmB2hMMkbDhFN86OcowiEnjIzQiXMbjFnMMnaMRjRJSUqjdIze59psG7VrIViAlZXR4IJnWHel9NFLl6uulTU0nQt-SAfBjW2-alOvp8GyLkpZVbI1TT0NZK2DR2hl3pTGVafoqJClg7P9O0Fvd7evi4dw9XS_XMxXoeI4akPmL2FRLIs8pUkCFLjWLMdU4pgXRZFKTWicxVzHJEoTmmOe55hpiGnBM64yNkGXQ-_WNh8duFZUxikoy-HXgqQswQzTLPEoHVBlG-csFGJrTSXtThAseqNiI3qjojfaZ96oX7rY93d5Bfpv5VehB64HAPyVnwascMpArUAbC6oVujH_9X8D8-OHIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837030297</pqid></control><display><type>article</type><title>Adipocyte Ceramides Regulate Subcutaneous Adipose Browning, Inflammation, and Metabolism</title><source>MEDLINE</source><source>Open Access: Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB Electronic Journals Library</source><creator>Chaurasia, Bhagirath ; Kaddai, Vincent Andre ; Lancaster, Graeme Iain ; Henstridge, Darren C. ; Sriram, Sandhya ; Galam, Dwight Lark Anolin ; Gopalan, Venkatesh ; Prakash, K.N. Bhanu ; Velan, S. Sendhil ; Bulchand, Sarada ; Tsong, Teh Jing ; Wang, Mei ; Siddique, Monowarul Mobin ; Yuguang, Guan ; Sigmundsson, Kristmundur ; Mellet, Natalie A. ; Weir, Jacquelyn M. ; Meikle, Peter J. ; Bin M. Yassin, M. Shabeer ; Shabbir, Asim ; Shayman, James A. ; Hirabayashi, Yoshio ; Shiow, Sue-Anne Toh Ee ; Sugii, Shigeki ; Summers, Scott A.</creator><creatorcontrib>Chaurasia, Bhagirath ; Kaddai, Vincent Andre ; Lancaster, Graeme Iain ; Henstridge, Darren C. ; Sriram, Sandhya ; Galam, Dwight Lark Anolin ; Gopalan, Venkatesh ; Prakash, K.N. Bhanu ; Velan, S. Sendhil ; Bulchand, Sarada ; Tsong, Teh Jing ; Wang, Mei ; Siddique, Monowarul Mobin ; Yuguang, Guan ; Sigmundsson, Kristmundur ; Mellet, Natalie A. ; Weir, Jacquelyn M. ; Meikle, Peter J. ; Bin M. Yassin, M. Shabeer ; Shabbir, Asim ; Shayman, James A. ; Hirabayashi, Yoshio ; Shiow, Sue-Anne Toh Ee ; Sugii, Shigeki ; Summers, Scott A.</creatorcontrib><description>Adipocytes package incoming fatty acids into triglycerides and other glycerolipids, with only a fraction spilling into a parallel biosynthetic pathway that produces sphingolipids. Herein, we demonstrate that subcutaneous adipose tissue of type 2 diabetics contains considerably more sphingolipids than non-diabetic, BMI-matched counterparts. Whole-body and adipose tissue-specific inhibition/deletion of serine palmitoyltransferase (Sptlc), the first enzyme in the sphingolipid biosynthesis cascade, in mice markedly altered adipose morphology and metabolism, particularly in subcutaneous adipose tissue. The reduction in adipose sphingolipids increased brown and beige/brite adipocyte numbers, mitochondrial activity, and insulin sensitivity. The manipulation also increased numbers of anti-inflammatory M2 macrophages in the adipose bed and induced secretion of insulin-sensitizing adipokines. By comparison, deletion of serine palmitoyltransferase from macrophages had no discernible effects on metabolic homeostasis or adipose function. These data indicate that newly synthesized adipocyte sphingolipids are nutrient signals that drive changes in the adipose phenotype to influence whole-body energy expenditure and nutrient metabolism.
[Display omitted]
•Cold or β-adrenergic agonists selectively reduce adipose ceramides•Adipocyte-specific inhibition of ceramide synthesis induces adipose beiging•Ceramide effects on adipose metabolism are cell autonomous•Adipose sphingolipids increase in obesity and correlate with insulin resistance
Chaurasia et al. show that whole-body and fat-specific inhibition of ceramide synthesis induces browning and increases M2 macrophages preferentially in subcutaneous WAT of obese mice. Adipose sphingolipids, increased by overnutrition and decreased by cold, modulate β-adrenergic-induced thermogenesis.</description><identifier>ISSN: 1550-4131</identifier><identifier>EISSN: 1932-7420</identifier><identifier>DOI: 10.1016/j.cmet.2016.10.002</identifier><identifier>PMID: 27818258</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adipocytes - drug effects ; Adipocytes - metabolism ; Adipose Tissue, Brown - drug effects ; Adipose Tissue, Brown - metabolism ; Adipose Tissue, Brown - pathology ; Adrenergic beta-Agonists - pharmacology ; Adult ; Aged ; Animals ; Body Mass Index ; Cell Differentiation - drug effects ; Cell Differentiation - genetics ; Ceramides - pharmacology ; Cold Temperature ; Diabetes Mellitus - metabolism ; Dioxoles - pharmacology ; Energy Metabolism - drug effects ; Fatty Liver - metabolism ; Fatty Liver - pathology ; Gene Deletion ; Gene Expression Regulation - drug effects ; Glucose - metabolism ; Humans ; Inflammation - genetics ; Inflammation - pathology ; Mice ; Middle Aged ; Obesity - metabolism ; Obesity - pathology ; Organ Specificity - drug effects ; Serine C-Palmitoyltransferase - metabolism ; Sphingolipids - biosynthesis ; Sphingolipids - metabolism ; Subcutaneous Fat - drug effects ; Subcutaneous Fat - metabolism ; Subcutaneous Fat - pathology ; Thermogenesis - drug effects ; Thermogenesis - genetics ; Young Adult</subject><ispartof>Cell metabolism, 2016-12, Vol.24 (6), p.820-834</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-3101356afb8277e2e4dd3b02a064fff8ad126964d615872b04bb03de62f494c93</citedby><cites>FETCH-LOGICAL-c405t-3101356afb8277e2e4dd3b02a064fff8ad126964d615872b04bb03de62f494c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1550413116305332$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27818258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chaurasia, Bhagirath</creatorcontrib><creatorcontrib>Kaddai, Vincent Andre</creatorcontrib><creatorcontrib>Lancaster, Graeme Iain</creatorcontrib><creatorcontrib>Henstridge, Darren C.</creatorcontrib><creatorcontrib>Sriram, Sandhya</creatorcontrib><creatorcontrib>Galam, Dwight Lark Anolin</creatorcontrib><creatorcontrib>Gopalan, Venkatesh</creatorcontrib><creatorcontrib>Prakash, K.N. Bhanu</creatorcontrib><creatorcontrib>Velan, S. Sendhil</creatorcontrib><creatorcontrib>Bulchand, Sarada</creatorcontrib><creatorcontrib>Tsong, Teh Jing</creatorcontrib><creatorcontrib>Wang, Mei</creatorcontrib><creatorcontrib>Siddique, Monowarul Mobin</creatorcontrib><creatorcontrib>Yuguang, Guan</creatorcontrib><creatorcontrib>Sigmundsson, Kristmundur</creatorcontrib><creatorcontrib>Mellet, Natalie A.</creatorcontrib><creatorcontrib>Weir, Jacquelyn M.</creatorcontrib><creatorcontrib>Meikle, Peter J.</creatorcontrib><creatorcontrib>Bin M. Yassin, M. Shabeer</creatorcontrib><creatorcontrib>Shabbir, Asim</creatorcontrib><creatorcontrib>Shayman, James A.</creatorcontrib><creatorcontrib>Hirabayashi, Yoshio</creatorcontrib><creatorcontrib>Shiow, Sue-Anne Toh Ee</creatorcontrib><creatorcontrib>Sugii, Shigeki</creatorcontrib><creatorcontrib>Summers, Scott A.</creatorcontrib><title>Adipocyte Ceramides Regulate Subcutaneous Adipose Browning, Inflammation, and Metabolism</title><title>Cell metabolism</title><addtitle>Cell Metab</addtitle><description>Adipocytes package incoming fatty acids into triglycerides and other glycerolipids, with only a fraction spilling into a parallel biosynthetic pathway that produces sphingolipids. Herein, we demonstrate that subcutaneous adipose tissue of type 2 diabetics contains considerably more sphingolipids than non-diabetic, BMI-matched counterparts. Whole-body and adipose tissue-specific inhibition/deletion of serine palmitoyltransferase (Sptlc), the first enzyme in the sphingolipid biosynthesis cascade, in mice markedly altered adipose morphology and metabolism, particularly in subcutaneous adipose tissue. The reduction in adipose sphingolipids increased brown and beige/brite adipocyte numbers, mitochondrial activity, and insulin sensitivity. The manipulation also increased numbers of anti-inflammatory M2 macrophages in the adipose bed and induced secretion of insulin-sensitizing adipokines. By comparison, deletion of serine palmitoyltransferase from macrophages had no discernible effects on metabolic homeostasis or adipose function. These data indicate that newly synthesized adipocyte sphingolipids are nutrient signals that drive changes in the adipose phenotype to influence whole-body energy expenditure and nutrient metabolism.
[Display omitted]
•Cold or β-adrenergic agonists selectively reduce adipose ceramides•Adipocyte-specific inhibition of ceramide synthesis induces adipose beiging•Ceramide effects on adipose metabolism are cell autonomous•Adipose sphingolipids increase in obesity and correlate with insulin resistance
Chaurasia et al. show that whole-body and fat-specific inhibition of ceramide synthesis induces browning and increases M2 macrophages preferentially in subcutaneous WAT of obese mice. Adipose sphingolipids, increased by overnutrition and decreased by cold, modulate β-adrenergic-induced thermogenesis.</description><subject>Adipocytes - drug effects</subject><subject>Adipocytes - metabolism</subject><subject>Adipose Tissue, Brown - drug effects</subject><subject>Adipose Tissue, Brown - metabolism</subject><subject>Adipose Tissue, Brown - pathology</subject><subject>Adrenergic beta-Agonists - pharmacology</subject><subject>Adult</subject><subject>Aged</subject><subject>Animals</subject><subject>Body Mass Index</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Differentiation - genetics</subject><subject>Ceramides - pharmacology</subject><subject>Cold Temperature</subject><subject>Diabetes Mellitus - metabolism</subject><subject>Dioxoles - pharmacology</subject><subject>Energy Metabolism - drug effects</subject><subject>Fatty Liver - metabolism</subject><subject>Fatty Liver - pathology</subject><subject>Gene Deletion</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Glucose - metabolism</subject><subject>Humans</subject><subject>Inflammation - genetics</subject><subject>Inflammation - pathology</subject><subject>Mice</subject><subject>Middle Aged</subject><subject>Obesity - metabolism</subject><subject>Obesity - pathology</subject><subject>Organ Specificity - drug effects</subject><subject>Serine C-Palmitoyltransferase - metabolism</subject><subject>Sphingolipids - biosynthesis</subject><subject>Sphingolipids - metabolism</subject><subject>Subcutaneous Fat - drug effects</subject><subject>Subcutaneous Fat - metabolism</subject><subject>Subcutaneous Fat - pathology</subject><subject>Thermogenesis - drug effects</subject><subject>Thermogenesis - genetics</subject><subject>Young Adult</subject><issn>1550-4131</issn><issn>1932-7420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKAzEUhoMotlZfwIXM0kWn5jY3cFOLl0JF8ALuQiY5U1LmUpMZpW9vxqkuXeXw852fnA-hc4JnBJP4ajNTFbQz6mcfzDCmB2hMMkbDhFN86OcowiEnjIzQiXMbjFnMMnaMRjRJSUqjdIze59psG7VrIViAlZXR4IJnWHel9NFLl6uulTU0nQt-SAfBjW2-alOvp8GyLkpZVbI1TT0NZK2DR2hl3pTGVafoqJClg7P9O0Fvd7evi4dw9XS_XMxXoeI4akPmL2FRLIs8pUkCFLjWLMdU4pgXRZFKTWicxVzHJEoTmmOe55hpiGnBM64yNkGXQ-_WNh8duFZUxikoy-HXgqQswQzTLPEoHVBlG-csFGJrTSXtThAseqNiI3qjojfaZ96oX7rY93d5Bfpv5VehB64HAPyVnwascMpArUAbC6oVujH_9X8D8-OHIg</recordid><startdate>20161213</startdate><enddate>20161213</enddate><creator>Chaurasia, Bhagirath</creator><creator>Kaddai, Vincent Andre</creator><creator>Lancaster, Graeme Iain</creator><creator>Henstridge, Darren C.</creator><creator>Sriram, Sandhya</creator><creator>Galam, Dwight Lark Anolin</creator><creator>Gopalan, Venkatesh</creator><creator>Prakash, K.N. Bhanu</creator><creator>Velan, S. Sendhil</creator><creator>Bulchand, Sarada</creator><creator>Tsong, Teh Jing</creator><creator>Wang, Mei</creator><creator>Siddique, Monowarul Mobin</creator><creator>Yuguang, Guan</creator><creator>Sigmundsson, Kristmundur</creator><creator>Mellet, Natalie A.</creator><creator>Weir, Jacquelyn M.</creator><creator>Meikle, Peter J.</creator><creator>Bin M. Yassin, M. Shabeer</creator><creator>Shabbir, Asim</creator><creator>Shayman, James A.</creator><creator>Hirabayashi, Yoshio</creator><creator>Shiow, Sue-Anne Toh Ee</creator><creator>Sugii, Shigeki</creator><creator>Summers, Scott A.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161213</creationdate><title>Adipocyte Ceramides Regulate Subcutaneous Adipose Browning, Inflammation, and Metabolism</title><author>Chaurasia, Bhagirath ; Kaddai, Vincent Andre ; Lancaster, Graeme Iain ; Henstridge, Darren C. ; Sriram, Sandhya ; Galam, Dwight Lark Anolin ; Gopalan, Venkatesh ; Prakash, K.N. Bhanu ; Velan, S. Sendhil ; Bulchand, Sarada ; Tsong, Teh Jing ; Wang, Mei ; Siddique, Monowarul Mobin ; Yuguang, Guan ; Sigmundsson, Kristmundur ; Mellet, Natalie A. ; Weir, Jacquelyn M. ; Meikle, Peter J. ; Bin M. Yassin, M. Shabeer ; Shabbir, Asim ; Shayman, James A. ; Hirabayashi, Yoshio ; Shiow, Sue-Anne Toh Ee ; Sugii, Shigeki ; Summers, Scott A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-3101356afb8277e2e4dd3b02a064fff8ad126964d615872b04bb03de62f494c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adipocytes - drug effects</topic><topic>Adipocytes - metabolism</topic><topic>Adipose Tissue, Brown - drug effects</topic><topic>Adipose Tissue, Brown - metabolism</topic><topic>Adipose Tissue, Brown - pathology</topic><topic>Adrenergic beta-Agonists - pharmacology</topic><topic>Adult</topic><topic>Aged</topic><topic>Animals</topic><topic>Body Mass Index</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Differentiation - genetics</topic><topic>Ceramides - pharmacology</topic><topic>Cold Temperature</topic><topic>Diabetes Mellitus - metabolism</topic><topic>Dioxoles - pharmacology</topic><topic>Energy Metabolism - drug effects</topic><topic>Fatty Liver - metabolism</topic><topic>Fatty Liver - pathology</topic><topic>Gene Deletion</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Glucose - metabolism</topic><topic>Humans</topic><topic>Inflammation - genetics</topic><topic>Inflammation - pathology</topic><topic>Mice</topic><topic>Middle Aged</topic><topic>Obesity - metabolism</topic><topic>Obesity - pathology</topic><topic>Organ Specificity - drug effects</topic><topic>Serine C-Palmitoyltransferase - metabolism</topic><topic>Sphingolipids - biosynthesis</topic><topic>Sphingolipids - metabolism</topic><topic>Subcutaneous Fat - drug effects</topic><topic>Subcutaneous Fat - metabolism</topic><topic>Subcutaneous Fat - pathology</topic><topic>Thermogenesis - drug effects</topic><topic>Thermogenesis - genetics</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaurasia, Bhagirath</creatorcontrib><creatorcontrib>Kaddai, Vincent Andre</creatorcontrib><creatorcontrib>Lancaster, Graeme Iain</creatorcontrib><creatorcontrib>Henstridge, Darren C.</creatorcontrib><creatorcontrib>Sriram, Sandhya</creatorcontrib><creatorcontrib>Galam, Dwight Lark Anolin</creatorcontrib><creatorcontrib>Gopalan, Venkatesh</creatorcontrib><creatorcontrib>Prakash, K.N. Bhanu</creatorcontrib><creatorcontrib>Velan, S. Sendhil</creatorcontrib><creatorcontrib>Bulchand, Sarada</creatorcontrib><creatorcontrib>Tsong, Teh Jing</creatorcontrib><creatorcontrib>Wang, Mei</creatorcontrib><creatorcontrib>Siddique, Monowarul Mobin</creatorcontrib><creatorcontrib>Yuguang, Guan</creatorcontrib><creatorcontrib>Sigmundsson, Kristmundur</creatorcontrib><creatorcontrib>Mellet, Natalie A.</creatorcontrib><creatorcontrib>Weir, Jacquelyn M.</creatorcontrib><creatorcontrib>Meikle, Peter J.</creatorcontrib><creatorcontrib>Bin M. Yassin, M. Shabeer</creatorcontrib><creatorcontrib>Shabbir, Asim</creatorcontrib><creatorcontrib>Shayman, James A.</creatorcontrib><creatorcontrib>Hirabayashi, Yoshio</creatorcontrib><creatorcontrib>Shiow, Sue-Anne Toh Ee</creatorcontrib><creatorcontrib>Sugii, Shigeki</creatorcontrib><creatorcontrib>Summers, Scott A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaurasia, Bhagirath</au><au>Kaddai, Vincent Andre</au><au>Lancaster, Graeme Iain</au><au>Henstridge, Darren C.</au><au>Sriram, Sandhya</au><au>Galam, Dwight Lark Anolin</au><au>Gopalan, Venkatesh</au><au>Prakash, K.N. Bhanu</au><au>Velan, S. Sendhil</au><au>Bulchand, Sarada</au><au>Tsong, Teh Jing</au><au>Wang, Mei</au><au>Siddique, Monowarul Mobin</au><au>Yuguang, Guan</au><au>Sigmundsson, Kristmundur</au><au>Mellet, Natalie A.</au><au>Weir, Jacquelyn M.</au><au>Meikle, Peter J.</au><au>Bin M. Yassin, M. Shabeer</au><au>Shabbir, Asim</au><au>Shayman, James A.</au><au>Hirabayashi, Yoshio</au><au>Shiow, Sue-Anne Toh Ee</au><au>Sugii, Shigeki</au><au>Summers, Scott A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adipocyte Ceramides Regulate Subcutaneous Adipose Browning, Inflammation, and Metabolism</atitle><jtitle>Cell metabolism</jtitle><addtitle>Cell Metab</addtitle><date>2016-12-13</date><risdate>2016</risdate><volume>24</volume><issue>6</issue><spage>820</spage><epage>834</epage><pages>820-834</pages><issn>1550-4131</issn><eissn>1932-7420</eissn><abstract>Adipocytes package incoming fatty acids into triglycerides and other glycerolipids, with only a fraction spilling into a parallel biosynthetic pathway that produces sphingolipids. Herein, we demonstrate that subcutaneous adipose tissue of type 2 diabetics contains considerably more sphingolipids than non-diabetic, BMI-matched counterparts. Whole-body and adipose tissue-specific inhibition/deletion of serine palmitoyltransferase (Sptlc), the first enzyme in the sphingolipid biosynthesis cascade, in mice markedly altered adipose morphology and metabolism, particularly in subcutaneous adipose tissue. The reduction in adipose sphingolipids increased brown and beige/brite adipocyte numbers, mitochondrial activity, and insulin sensitivity. The manipulation also increased numbers of anti-inflammatory M2 macrophages in the adipose bed and induced secretion of insulin-sensitizing adipokines. By comparison, deletion of serine palmitoyltransferase from macrophages had no discernible effects on metabolic homeostasis or adipose function. These data indicate that newly synthesized adipocyte sphingolipids are nutrient signals that drive changes in the adipose phenotype to influence whole-body energy expenditure and nutrient metabolism.
[Display omitted]
•Cold or β-adrenergic agonists selectively reduce adipose ceramides•Adipocyte-specific inhibition of ceramide synthesis induces adipose beiging•Ceramide effects on adipose metabolism are cell autonomous•Adipose sphingolipids increase in obesity and correlate with insulin resistance
Chaurasia et al. show that whole-body and fat-specific inhibition of ceramide synthesis induces browning and increases M2 macrophages preferentially in subcutaneous WAT of obese mice. Adipose sphingolipids, increased by overnutrition and decreased by cold, modulate β-adrenergic-induced thermogenesis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27818258</pmid><doi>10.1016/j.cmet.2016.10.002</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1550-4131 |
ispartof | Cell metabolism, 2016-12, Vol.24 (6), p.820-834 |
issn | 1550-4131 1932-7420 |
language | eng |
recordid | cdi_proquest_miscellaneous_1837030297 |
source | MEDLINE; Open Access: Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB Electronic Journals Library |
subjects | Adipocytes - drug effects Adipocytes - metabolism Adipose Tissue, Brown - drug effects Adipose Tissue, Brown - metabolism Adipose Tissue, Brown - pathology Adrenergic beta-Agonists - pharmacology Adult Aged Animals Body Mass Index Cell Differentiation - drug effects Cell Differentiation - genetics Ceramides - pharmacology Cold Temperature Diabetes Mellitus - metabolism Dioxoles - pharmacology Energy Metabolism - drug effects Fatty Liver - metabolism Fatty Liver - pathology Gene Deletion Gene Expression Regulation - drug effects Glucose - metabolism Humans Inflammation - genetics Inflammation - pathology Mice Middle Aged Obesity - metabolism Obesity - pathology Organ Specificity - drug effects Serine C-Palmitoyltransferase - metabolism Sphingolipids - biosynthesis Sphingolipids - metabolism Subcutaneous Fat - drug effects Subcutaneous Fat - metabolism Subcutaneous Fat - pathology Thermogenesis - drug effects Thermogenesis - genetics Young Adult |
title | Adipocyte Ceramides Regulate Subcutaneous Adipose Browning, Inflammation, and Metabolism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adipocyte%20Ceramides%20Regulate%20Subcutaneous%20Adipose%20Browning,%20Inflammation,%20and%20Metabolism&rft.jtitle=Cell%20metabolism&rft.au=Chaurasia,%20Bhagirath&rft.date=2016-12-13&rft.volume=24&rft.issue=6&rft.spage=820&rft.epage=834&rft.pages=820-834&rft.issn=1550-4131&rft.eissn=1932-7420&rft_id=info:doi/10.1016/j.cmet.2016.10.002&rft_dat=%3Cproquest_cross%3E1837030297%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1837030297&rft_id=info:pmid/27818258&rft_els_id=S1550413116305332&rfr_iscdi=true |