Wastewater treatment high rate algal pond biomass for bio-crude oil production

•Temperature effect on bio-crude production from wastewater algae was investigated.•The bio-crude yield increased with temperature.•The bio-crude higher heating values ranged 37.5–38.9kJ/g.•Up to 47.4% of the biomass energy (19.7kJ/g) was recovered in the bio-crudes. This study investigates the prod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2017-01, Vol.224, p.255-264
Hauptverfasser: Mehrabadi, Abbas, Craggs, Rupert, Farid, Mohammed M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue
container_start_page 255
container_title Bioresource technology
container_volume 224
creator Mehrabadi, Abbas
Craggs, Rupert
Farid, Mohammed M.
description •Temperature effect on bio-crude production from wastewater algae was investigated.•The bio-crude yield increased with temperature.•The bio-crude higher heating values ranged 37.5–38.9kJ/g.•Up to 47.4% of the biomass energy (19.7kJ/g) was recovered in the bio-crudes. This study investigates the production potential of bio-crude from wastewater treatment high rate algal pond (WWT HRAP) biomass in terms of yield, elemental/chemical composition and higher heating value (HHV). Hydrothermal liquefaction (HTL) of the biomass slurry (2.2wt% solid content, 19.7kJ/g HHV) was conducted at a range of temperatures (150–300°C) for one hour. The bio-crude yield and HHV varied in range of 3.1–24.9wt% and 37.5–38.9kJ/g, respectively. The bio-crudes were comprised of 71–72.4wt% carbon, 0.9–4.8wt% nitrogen, 8.7–9.8wt% hydrogen and 12–15.7wt% oxygen. GC–MS analysis indicated that pyrroles, indoles, amides and fatty acids were the most abundant bio-crude compounds. HTL of WWT HRAP biomass resulted, also, in production of 10.5–26wt% water-soluble compounds (containing up to 293mg/L ammonia), 1.0–9.3wt% gas and 44.8–85.5wt% solid residue (12.2–18.1kJ/g). The aqueous phase has a great potential to be used as an ammonia source for further algal cultivation and the solid residue could be used as a process fuel source.
doi_str_mv 10.1016/j.biortech.2016.10.082
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1837026402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852416314961</els_id><sourcerecordid>1837026402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-2b762cc5a1006c124c6d5f5c6946794b3785e5d342f631cbcdecbfdac97bb0803</originalsourceid><addsrcrecordid>eNqFkM1OxCAUhYnR6Dj6CpMu3XQE2kK70xj_EqMbjUtCL7czTNqiQDW-vUxG3boCDufck_sRsmB0ySgT55tla52PCOslT-8kLmnN98iM1bLIeSPFPpnRRtC8rnh5RI5D2FBKCyb5ITnismaiqOiMPL7qEPFTR_RZ9KjjgGPM1na1znwSM92vdJ-9udFkqXDQIWSd89t7Dn4ymDmbvr0zE0TrxhNy0Ok-4OnPOScvN9fPV3f5w9Pt_dXlQw6lrGLOWyk4QKUZpQIYL0GYqqtANKWQTdkWsq6wMkXJO1EwaMEgtJ3R0Mi2pTUt5uRsNzdVv08YohpsAOx7PaKbgmJ1ISkXJeXJKnZW8C4Ej51683bQ_ksxqrYs1Ub9slRblls9sUzBxU_H1A5o_mK_8JLhYmfAtOmHRa8CWBwBjfUIURln_-v4BkMaiXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837026402</pqid></control><display><type>article</type><title>Wastewater treatment high rate algal pond biomass for bio-crude oil production</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Mehrabadi, Abbas ; Craggs, Rupert ; Farid, Mohammed M.</creator><creatorcontrib>Mehrabadi, Abbas ; Craggs, Rupert ; Farid, Mohammed M.</creatorcontrib><description>•Temperature effect on bio-crude production from wastewater algae was investigated.•The bio-crude yield increased with temperature.•The bio-crude higher heating values ranged 37.5–38.9kJ/g.•Up to 47.4% of the biomass energy (19.7kJ/g) was recovered in the bio-crudes. This study investigates the production potential of bio-crude from wastewater treatment high rate algal pond (WWT HRAP) biomass in terms of yield, elemental/chemical composition and higher heating value (HHV). Hydrothermal liquefaction (HTL) of the biomass slurry (2.2wt% solid content, 19.7kJ/g HHV) was conducted at a range of temperatures (150–300°C) for one hour. The bio-crude yield and HHV varied in range of 3.1–24.9wt% and 37.5–38.9kJ/g, respectively. The bio-crudes were comprised of 71–72.4wt% carbon, 0.9–4.8wt% nitrogen, 8.7–9.8wt% hydrogen and 12–15.7wt% oxygen. GC–MS analysis indicated that pyrroles, indoles, amides and fatty acids were the most abundant bio-crude compounds. HTL of WWT HRAP biomass resulted, also, in production of 10.5–26wt% water-soluble compounds (containing up to 293mg/L ammonia), 1.0–9.3wt% gas and 44.8–85.5wt% solid residue (12.2–18.1kJ/g). The aqueous phase has a great potential to be used as an ammonia source for further algal cultivation and the solid residue could be used as a process fuel source.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2016.10.082</identifier><identifier>PMID: 27816350</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bio-crude ; Biofuels ; Biomass ; Chlorophyta - growth &amp; development ; Fatty Acids - analysis ; Gas Chromatography-Mass Spectrometry ; High rate algal pond ; Hydrogen - analysis ; Hydrogen - metabolism ; Hydrothermal liquefaction ; Indoles - analysis ; Microalgae ; Microalgae - chemistry ; Microalgae - growth &amp; development ; Models, Theoretical ; Nitrogen - analysis ; Nitrogen - metabolism ; Ponds ; Pyrroles - analysis ; Solubility ; Temperature ; Waste Disposal, Fluid - methods ; Waste Water - chemistry</subject><ispartof>Bioresource technology, 2017-01, Vol.224, p.255-264</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-2b762cc5a1006c124c6d5f5c6946794b3785e5d342f631cbcdecbfdac97bb0803</citedby><cites>FETCH-LOGICAL-c475t-2b762cc5a1006c124c6d5f5c6946794b3785e5d342f631cbcdecbfdac97bb0803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2016.10.082$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27816350$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mehrabadi, Abbas</creatorcontrib><creatorcontrib>Craggs, Rupert</creatorcontrib><creatorcontrib>Farid, Mohammed M.</creatorcontrib><title>Wastewater treatment high rate algal pond biomass for bio-crude oil production</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>•Temperature effect on bio-crude production from wastewater algae was investigated.•The bio-crude yield increased with temperature.•The bio-crude higher heating values ranged 37.5–38.9kJ/g.•Up to 47.4% of the biomass energy (19.7kJ/g) was recovered in the bio-crudes. This study investigates the production potential of bio-crude from wastewater treatment high rate algal pond (WWT HRAP) biomass in terms of yield, elemental/chemical composition and higher heating value (HHV). Hydrothermal liquefaction (HTL) of the biomass slurry (2.2wt% solid content, 19.7kJ/g HHV) was conducted at a range of temperatures (150–300°C) for one hour. The bio-crude yield and HHV varied in range of 3.1–24.9wt% and 37.5–38.9kJ/g, respectively. The bio-crudes were comprised of 71–72.4wt% carbon, 0.9–4.8wt% nitrogen, 8.7–9.8wt% hydrogen and 12–15.7wt% oxygen. GC–MS analysis indicated that pyrroles, indoles, amides and fatty acids were the most abundant bio-crude compounds. HTL of WWT HRAP biomass resulted, also, in production of 10.5–26wt% water-soluble compounds (containing up to 293mg/L ammonia), 1.0–9.3wt% gas and 44.8–85.5wt% solid residue (12.2–18.1kJ/g). The aqueous phase has a great potential to be used as an ammonia source for further algal cultivation and the solid residue could be used as a process fuel source.</description><subject>Bio-crude</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Chlorophyta - growth &amp; development</subject><subject>Fatty Acids - analysis</subject><subject>Gas Chromatography-Mass Spectrometry</subject><subject>High rate algal pond</subject><subject>Hydrogen - analysis</subject><subject>Hydrogen - metabolism</subject><subject>Hydrothermal liquefaction</subject><subject>Indoles - analysis</subject><subject>Microalgae</subject><subject>Microalgae - chemistry</subject><subject>Microalgae - growth &amp; development</subject><subject>Models, Theoretical</subject><subject>Nitrogen - analysis</subject><subject>Nitrogen - metabolism</subject><subject>Ponds</subject><subject>Pyrroles - analysis</subject><subject>Solubility</subject><subject>Temperature</subject><subject>Waste Disposal, Fluid - methods</subject><subject>Waste Water - chemistry</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1OxCAUhYnR6Dj6CpMu3XQE2kK70xj_EqMbjUtCL7czTNqiQDW-vUxG3boCDufck_sRsmB0ySgT55tla52PCOslT-8kLmnN98iM1bLIeSPFPpnRRtC8rnh5RI5D2FBKCyb5ITnismaiqOiMPL7qEPFTR_RZ9KjjgGPM1na1znwSM92vdJ-9udFkqXDQIWSd89t7Dn4ymDmbvr0zE0TrxhNy0Ok-4OnPOScvN9fPV3f5w9Pt_dXlQw6lrGLOWyk4QKUZpQIYL0GYqqtANKWQTdkWsq6wMkXJO1EwaMEgtJ3R0Mi2pTUt5uRsNzdVv08YohpsAOx7PaKbgmJ1ISkXJeXJKnZW8C4Ej51683bQ_ksxqrYs1Ub9slRblls9sUzBxU_H1A5o_mK_8JLhYmfAtOmHRa8CWBwBjfUIURln_-v4BkMaiXs</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Mehrabadi, Abbas</creator><creator>Craggs, Rupert</creator><creator>Farid, Mohammed M.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170101</creationdate><title>Wastewater treatment high rate algal pond biomass for bio-crude oil production</title><author>Mehrabadi, Abbas ; Craggs, Rupert ; Farid, Mohammed M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-2b762cc5a1006c124c6d5f5c6946794b3785e5d342f631cbcdecbfdac97bb0803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bio-crude</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Chlorophyta - growth &amp; development</topic><topic>Fatty Acids - analysis</topic><topic>Gas Chromatography-Mass Spectrometry</topic><topic>High rate algal pond</topic><topic>Hydrogen - analysis</topic><topic>Hydrogen - metabolism</topic><topic>Hydrothermal liquefaction</topic><topic>Indoles - analysis</topic><topic>Microalgae</topic><topic>Microalgae - chemistry</topic><topic>Microalgae - growth &amp; development</topic><topic>Models, Theoretical</topic><topic>Nitrogen - analysis</topic><topic>Nitrogen - metabolism</topic><topic>Ponds</topic><topic>Pyrroles - analysis</topic><topic>Solubility</topic><topic>Temperature</topic><topic>Waste Disposal, Fluid - methods</topic><topic>Waste Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehrabadi, Abbas</creatorcontrib><creatorcontrib>Craggs, Rupert</creatorcontrib><creatorcontrib>Farid, Mohammed M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehrabadi, Abbas</au><au>Craggs, Rupert</au><au>Farid, Mohammed M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wastewater treatment high rate algal pond biomass for bio-crude oil production</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>224</volume><spage>255</spage><epage>264</epage><pages>255-264</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>•Temperature effect on bio-crude production from wastewater algae was investigated.•The bio-crude yield increased with temperature.•The bio-crude higher heating values ranged 37.5–38.9kJ/g.•Up to 47.4% of the biomass energy (19.7kJ/g) was recovered in the bio-crudes. This study investigates the production potential of bio-crude from wastewater treatment high rate algal pond (WWT HRAP) biomass in terms of yield, elemental/chemical composition and higher heating value (HHV). Hydrothermal liquefaction (HTL) of the biomass slurry (2.2wt% solid content, 19.7kJ/g HHV) was conducted at a range of temperatures (150–300°C) for one hour. The bio-crude yield and HHV varied in range of 3.1–24.9wt% and 37.5–38.9kJ/g, respectively. The bio-crudes were comprised of 71–72.4wt% carbon, 0.9–4.8wt% nitrogen, 8.7–9.8wt% hydrogen and 12–15.7wt% oxygen. GC–MS analysis indicated that pyrroles, indoles, amides and fatty acids were the most abundant bio-crude compounds. HTL of WWT HRAP biomass resulted, also, in production of 10.5–26wt% water-soluble compounds (containing up to 293mg/L ammonia), 1.0–9.3wt% gas and 44.8–85.5wt% solid residue (12.2–18.1kJ/g). The aqueous phase has a great potential to be used as an ammonia source for further algal cultivation and the solid residue could be used as a process fuel source.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>27816350</pmid><doi>10.1016/j.biortech.2016.10.082</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2017-01, Vol.224, p.255-264
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_1837026402
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Bio-crude
Biofuels
Biomass
Chlorophyta - growth & development
Fatty Acids - analysis
Gas Chromatography-Mass Spectrometry
High rate algal pond
Hydrogen - analysis
Hydrogen - metabolism
Hydrothermal liquefaction
Indoles - analysis
Microalgae
Microalgae - chemistry
Microalgae - growth & development
Models, Theoretical
Nitrogen - analysis
Nitrogen - metabolism
Ponds
Pyrroles - analysis
Solubility
Temperature
Waste Disposal, Fluid - methods
Waste Water - chemistry
title Wastewater treatment high rate algal pond biomass for bio-crude oil production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wastewater%20treatment%20high%20rate%20algal%20pond%20biomass%20for%20bio-crude%20oil%20production&rft.jtitle=Bioresource%20technology&rft.au=Mehrabadi,%20Abbas&rft.date=2017-01-01&rft.volume=224&rft.spage=255&rft.epage=264&rft.pages=255-264&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2016.10.082&rft_dat=%3Cproquest_cross%3E1837026402%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1837026402&rft_id=info:pmid/27816350&rft_els_id=S0960852416314961&rfr_iscdi=true