Nbs1 Converts the Human Mre11/Rad50 Nuclease Complex into an Endo/Exonuclease Machine Specific for Protein-DNA Adducts

The human Mre11/Rad50/Nbs1 (hMRN) complex is critical for the sensing, processing, and signaling of DNA double-strand breaks. The nuclease activity of Mre11 is essential for mammalian development and cell viability, although the regulation and substrate specificity of Mre11 have been difficult to de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2016-11, Vol.64 (3), p.593-606
Hauptverfasser: Deshpande, Rajashree A., Lee, Ji-Hoon, Arora, Sucheta, Paull, Tanya T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 606
container_issue 3
container_start_page 593
container_title Molecular cell
container_volume 64
creator Deshpande, Rajashree A.
Lee, Ji-Hoon
Arora, Sucheta
Paull, Tanya T.
description The human Mre11/Rad50/Nbs1 (hMRN) complex is critical for the sensing, processing, and signaling of DNA double-strand breaks. The nuclease activity of Mre11 is essential for mammalian development and cell viability, although the regulation and substrate specificity of Mre11 have been difficult to define. Here we show that hMRN catalyzes sequential endonucleolytic and exonucleolytic activities on both 5′ and 3′ strands of DNA ends containing protein adducts, and that Nbs1, ATP, and adducts are essential for this function. In contrast, Nbs1 inhibits Mre11/Rad50-catalyzed 3′-to-5′ exonucleolytic degradation of clean DNA ends. The hMRN endonucleolytic cleavage events are further stimulated by the phosphorylated form of the human C-terminal binding protein-interacting protein (CtIP) DNA repair enzyme, establishing a role for CtIP in regulating hMRN activity. These results illuminate the important role of Nbs1 and CtIP in determining the substrates and consequences of human Mre11/Rad50 nuclease activities on protein-DNA lesions. [Display omitted] •The MRN complex introduces endonucleolytic cuts in DNA adjacent to 5′ adducts•Nbs1 promotes MR exonuclease at adduct sites but blocks resection of open ends•MRN endo- and exonuclease activity targets both strands of DNA close to the adduct•MRN endonuclease activity at blocked ends is stimulated by CtIP Deshpande et al. reconstitute processing of DNA ends containing protein adducts using human MRN complex in vitro. Nbs1 promotes Mre11/Rad50-catalyzed endo- and exonucleolytic cleavage of DNA containing 5′ adducts to generate clean double-strand break ends.
doi_str_mv 10.1016/j.molcel.2016.10.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1836732966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276516306335</els_id><sourcerecordid>1836732966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-68c984287d9b0ce27c4d9d103b34e3bdac4d801f01b2db958a87cbd143ad7f883</originalsourceid><addsrcrecordid>eNp9kN9P2zAQgK1paEC3_2Ca_LiXtL7ETZyXSVXXARItaLBny7EvwlVid3ZSwX-PqxYeebof-u5O9xHyHdgUGJSz7bT3ncZumqcqtaYM2CdyAayuMg4l_3zK86qcn5PLGLeMAZ-L-gs5zysBnNdwQfabJgJderfHMEQ6PCG9Hnvl6DogwOyvMnNGN6PuUEVMXL_r8JlaN3iaoJUzfrZ69u4NWCv9ZB3Shx1q21pNWx_offADWpf93izowphRD_ErOWtVF_HbKU7Ivz-rx-V1dnt3dbNc3GaaMzFkpdC14LmoTN0wjXmluakNsKIpOBaNUakWDFoGTW6aei6UqHRjgBfKVK0QxYT8PO7dBf9_xDjI3sYkrVMO_RgliKKsirwuy4TyI6qDjzFgK3fB9iq8SGDyYFxu5dG4PBg_dJPxNPbjdGFsejTvQ2-KE_DrCGD6c28xyKgtOo3GBtSDNN5-fOEVPI6TGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1836732966</pqid></control><display><type>article</type><title>Nbs1 Converts the Human Mre11/Rad50 Nuclease Complex into an Endo/Exonuclease Machine Specific for Protein-DNA Adducts</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Deshpande, Rajashree A. ; Lee, Ji-Hoon ; Arora, Sucheta ; Paull, Tanya T.</creator><creatorcontrib>Deshpande, Rajashree A. ; Lee, Ji-Hoon ; Arora, Sucheta ; Paull, Tanya T.</creatorcontrib><description>The human Mre11/Rad50/Nbs1 (hMRN) complex is critical for the sensing, processing, and signaling of DNA double-strand breaks. The nuclease activity of Mre11 is essential for mammalian development and cell viability, although the regulation and substrate specificity of Mre11 have been difficult to define. Here we show that hMRN catalyzes sequential endonucleolytic and exonucleolytic activities on both 5′ and 3′ strands of DNA ends containing protein adducts, and that Nbs1, ATP, and adducts are essential for this function. In contrast, Nbs1 inhibits Mre11/Rad50-catalyzed 3′-to-5′ exonucleolytic degradation of clean DNA ends. The hMRN endonucleolytic cleavage events are further stimulated by the phosphorylated form of the human C-terminal binding protein-interacting protein (CtIP) DNA repair enzyme, establishing a role for CtIP in regulating hMRN activity. These results illuminate the important role of Nbs1 and CtIP in determining the substrates and consequences of human Mre11/Rad50 nuclease activities on protein-DNA lesions. [Display omitted] •The MRN complex introduces endonucleolytic cuts in DNA adjacent to 5′ adducts•Nbs1 promotes MR exonuclease at adduct sites but blocks resection of open ends•MRN endo- and exonuclease activity targets both strands of DNA close to the adduct•MRN endonuclease activity at blocked ends is stimulated by CtIP Deshpande et al. reconstitute processing of DNA ends containing protein adducts using human MRN complex in vitro. Nbs1 promotes Mre11/Rad50-catalyzed endo- and exonucleolytic cleavage of DNA containing 5′ adducts to generate clean double-strand break ends.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2016.10.010</identifier><identifier>PMID: 27814491</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acid Anhydride Hydrolases ; Animals ; Baculoviridae - genetics ; Baculoviridae - metabolism ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; DNA Adducts - genetics ; DNA Adducts - metabolism ; DNA Breaks, Double-Stranded ; DNA Cleavage ; DNA Repair ; DNA Repair Enzymes - genetics ; DNA Repair Enzymes - metabolism ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Endodeoxyribonucleases ; Gene Expression ; Gene Expression Regulation ; Humans ; MRE11 Homologue Protein ; Mutation ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Phosphorylation ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Sf9 Cells ; Signal Transduction ; Spodoptera ; Substrate Specificity</subject><ispartof>Molecular cell, 2016-11, Vol.64 (3), p.593-606</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-68c984287d9b0ce27c4d9d103b34e3bdac4d801f01b2db958a87cbd143ad7f883</citedby><cites>FETCH-LOGICAL-c408t-68c984287d9b0ce27c4d9d103b34e3bdac4d801f01b2db958a87cbd143ad7f883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2016.10.010$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27814491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deshpande, Rajashree A.</creatorcontrib><creatorcontrib>Lee, Ji-Hoon</creatorcontrib><creatorcontrib>Arora, Sucheta</creatorcontrib><creatorcontrib>Paull, Tanya T.</creatorcontrib><title>Nbs1 Converts the Human Mre11/Rad50 Nuclease Complex into an Endo/Exonuclease Machine Specific for Protein-DNA Adducts</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>The human Mre11/Rad50/Nbs1 (hMRN) complex is critical for the sensing, processing, and signaling of DNA double-strand breaks. The nuclease activity of Mre11 is essential for mammalian development and cell viability, although the regulation and substrate specificity of Mre11 have been difficult to define. Here we show that hMRN catalyzes sequential endonucleolytic and exonucleolytic activities on both 5′ and 3′ strands of DNA ends containing protein adducts, and that Nbs1, ATP, and adducts are essential for this function. In contrast, Nbs1 inhibits Mre11/Rad50-catalyzed 3′-to-5′ exonucleolytic degradation of clean DNA ends. The hMRN endonucleolytic cleavage events are further stimulated by the phosphorylated form of the human C-terminal binding protein-interacting protein (CtIP) DNA repair enzyme, establishing a role for CtIP in regulating hMRN activity. These results illuminate the important role of Nbs1 and CtIP in determining the substrates and consequences of human Mre11/Rad50 nuclease activities on protein-DNA lesions. [Display omitted] •The MRN complex introduces endonucleolytic cuts in DNA adjacent to 5′ adducts•Nbs1 promotes MR exonuclease at adduct sites but blocks resection of open ends•MRN endo- and exonuclease activity targets both strands of DNA close to the adduct•MRN endonuclease activity at blocked ends is stimulated by CtIP Deshpande et al. reconstitute processing of DNA ends containing protein adducts using human MRN complex in vitro. Nbs1 promotes Mre11/Rad50-catalyzed endo- and exonucleolytic cleavage of DNA containing 5′ adducts to generate clean double-strand break ends.</description><subject>Acid Anhydride Hydrolases</subject><subject>Animals</subject><subject>Baculoviridae - genetics</subject><subject>Baculoviridae - metabolism</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>DNA Adducts - genetics</subject><subject>DNA Adducts - metabolism</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Cleavage</subject><subject>DNA Repair</subject><subject>DNA Repair Enzymes - genetics</subject><subject>DNA Repair Enzymes - metabolism</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Endodeoxyribonucleases</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation</subject><subject>Humans</subject><subject>MRE11 Homologue Protein</subject><subject>Mutation</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Phosphorylation</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sf9 Cells</subject><subject>Signal Transduction</subject><subject>Spodoptera</subject><subject>Substrate Specificity</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kN9P2zAQgK1paEC3_2Ca_LiXtL7ETZyXSVXXARItaLBny7EvwlVid3ZSwX-PqxYeebof-u5O9xHyHdgUGJSz7bT3ncZumqcqtaYM2CdyAayuMg4l_3zK86qcn5PLGLeMAZ-L-gs5zysBnNdwQfabJgJderfHMEQ6PCG9Hnvl6DogwOyvMnNGN6PuUEVMXL_r8JlaN3iaoJUzfrZ69u4NWCv9ZB3Shx1q21pNWx_offADWpf93izowphRD_ErOWtVF_HbKU7Ivz-rx-V1dnt3dbNc3GaaMzFkpdC14LmoTN0wjXmluakNsKIpOBaNUakWDFoGTW6aei6UqHRjgBfKVK0QxYT8PO7dBf9_xDjI3sYkrVMO_RgliKKsirwuy4TyI6qDjzFgK3fB9iq8SGDyYFxu5dG4PBg_dJPxNPbjdGFsejTvQ2-KE_DrCGD6c28xyKgtOo3GBtSDNN5-fOEVPI6TGw</recordid><startdate>20161103</startdate><enddate>20161103</enddate><creator>Deshpande, Rajashree A.</creator><creator>Lee, Ji-Hoon</creator><creator>Arora, Sucheta</creator><creator>Paull, Tanya T.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161103</creationdate><title>Nbs1 Converts the Human Mre11/Rad50 Nuclease Complex into an Endo/Exonuclease Machine Specific for Protein-DNA Adducts</title><author>Deshpande, Rajashree A. ; Lee, Ji-Hoon ; Arora, Sucheta ; Paull, Tanya T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-68c984287d9b0ce27c4d9d103b34e3bdac4d801f01b2db958a87cbd143ad7f883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acid Anhydride Hydrolases</topic><topic>Animals</topic><topic>Baculoviridae - genetics</topic><topic>Baculoviridae - metabolism</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>DNA Adducts - genetics</topic><topic>DNA Adducts - metabolism</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Cleavage</topic><topic>DNA Repair</topic><topic>DNA Repair Enzymes - genetics</topic><topic>DNA Repair Enzymes - metabolism</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Endodeoxyribonucleases</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation</topic><topic>Humans</topic><topic>MRE11 Homologue Protein</topic><topic>Mutation</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Phosphorylation</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sf9 Cells</topic><topic>Signal Transduction</topic><topic>Spodoptera</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deshpande, Rajashree A.</creatorcontrib><creatorcontrib>Lee, Ji-Hoon</creatorcontrib><creatorcontrib>Arora, Sucheta</creatorcontrib><creatorcontrib>Paull, Tanya T.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deshpande, Rajashree A.</au><au>Lee, Ji-Hoon</au><au>Arora, Sucheta</au><au>Paull, Tanya T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nbs1 Converts the Human Mre11/Rad50 Nuclease Complex into an Endo/Exonuclease Machine Specific for Protein-DNA Adducts</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2016-11-03</date><risdate>2016</risdate><volume>64</volume><issue>3</issue><spage>593</spage><epage>606</epage><pages>593-606</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>The human Mre11/Rad50/Nbs1 (hMRN) complex is critical for the sensing, processing, and signaling of DNA double-strand breaks. The nuclease activity of Mre11 is essential for mammalian development and cell viability, although the regulation and substrate specificity of Mre11 have been difficult to define. Here we show that hMRN catalyzes sequential endonucleolytic and exonucleolytic activities on both 5′ and 3′ strands of DNA ends containing protein adducts, and that Nbs1, ATP, and adducts are essential for this function. In contrast, Nbs1 inhibits Mre11/Rad50-catalyzed 3′-to-5′ exonucleolytic degradation of clean DNA ends. The hMRN endonucleolytic cleavage events are further stimulated by the phosphorylated form of the human C-terminal binding protein-interacting protein (CtIP) DNA repair enzyme, establishing a role for CtIP in regulating hMRN activity. These results illuminate the important role of Nbs1 and CtIP in determining the substrates and consequences of human Mre11/Rad50 nuclease activities on protein-DNA lesions. [Display omitted] •The MRN complex introduces endonucleolytic cuts in DNA adjacent to 5′ adducts•Nbs1 promotes MR exonuclease at adduct sites but blocks resection of open ends•MRN endo- and exonuclease activity targets both strands of DNA close to the adduct•MRN endonuclease activity at blocked ends is stimulated by CtIP Deshpande et al. reconstitute processing of DNA ends containing protein adducts using human MRN complex in vitro. Nbs1 promotes Mre11/Rad50-catalyzed endo- and exonucleolytic cleavage of DNA containing 5′ adducts to generate clean double-strand break ends.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27814491</pmid><doi>10.1016/j.molcel.2016.10.010</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2016-11, Vol.64 (3), p.593-606
issn 1097-2765
1097-4164
language eng
recordid cdi_proquest_miscellaneous_1836732966
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Acid Anhydride Hydrolases
Animals
Baculoviridae - genetics
Baculoviridae - metabolism
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
DNA Adducts - genetics
DNA Adducts - metabolism
DNA Breaks, Double-Stranded
DNA Cleavage
DNA Repair
DNA Repair Enzymes - genetics
DNA Repair Enzymes - metabolism
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Endodeoxyribonucleases
Gene Expression
Gene Expression Regulation
Humans
MRE11 Homologue Protein
Mutation
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Phosphorylation
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Sf9 Cells
Signal Transduction
Spodoptera
Substrate Specificity
title Nbs1 Converts the Human Mre11/Rad50 Nuclease Complex into an Endo/Exonuclease Machine Specific for Protein-DNA Adducts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nbs1%20Converts%20the%20Human%20Mre11/Rad50%20Nuclease%20Complex%20into%20an%20Endo/Exonuclease%20Machine%20Specific%20for%20Protein-DNA%20Adducts&rft.jtitle=Molecular%20cell&rft.au=Deshpande,%20Rajashree%C2%A0A.&rft.date=2016-11-03&rft.volume=64&rft.issue=3&rft.spage=593&rft.epage=606&rft.pages=593-606&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2016.10.010&rft_dat=%3Cproquest_cross%3E1836732966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1836732966&rft_id=info:pmid/27814491&rft_els_id=S1097276516306335&rfr_iscdi=true