Nbs1 Converts the Human Mre11/Rad50 Nuclease Complex into an Endo/Exonuclease Machine Specific for Protein-DNA Adducts
The human Mre11/Rad50/Nbs1 (hMRN) complex is critical for the sensing, processing, and signaling of DNA double-strand breaks. The nuclease activity of Mre11 is essential for mammalian development and cell viability, although the regulation and substrate specificity of Mre11 have been difficult to de...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2016-11, Vol.64 (3), p.593-606 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 606 |
---|---|
container_issue | 3 |
container_start_page | 593 |
container_title | Molecular cell |
container_volume | 64 |
creator | Deshpande, Rajashree A. Lee, Ji-Hoon Arora, Sucheta Paull, Tanya T. |
description | The human Mre11/Rad50/Nbs1 (hMRN) complex is critical for the sensing, processing, and signaling of DNA double-strand breaks. The nuclease activity of Mre11 is essential for mammalian development and cell viability, although the regulation and substrate specificity of Mre11 have been difficult to define. Here we show that hMRN catalyzes sequential endonucleolytic and exonucleolytic activities on both 5′ and 3′ strands of DNA ends containing protein adducts, and that Nbs1, ATP, and adducts are essential for this function. In contrast, Nbs1 inhibits Mre11/Rad50-catalyzed 3′-to-5′ exonucleolytic degradation of clean DNA ends. The hMRN endonucleolytic cleavage events are further stimulated by the phosphorylated form of the human C-terminal binding protein-interacting protein (CtIP) DNA repair enzyme, establishing a role for CtIP in regulating hMRN activity. These results illuminate the important role of Nbs1 and CtIP in determining the substrates and consequences of human Mre11/Rad50 nuclease activities on protein-DNA lesions.
[Display omitted]
•The MRN complex introduces endonucleolytic cuts in DNA adjacent to 5′ adducts•Nbs1 promotes MR exonuclease at adduct sites but blocks resection of open ends•MRN endo- and exonuclease activity targets both strands of DNA close to the adduct•MRN endonuclease activity at blocked ends is stimulated by CtIP
Deshpande et al. reconstitute processing of DNA ends containing protein adducts using human MRN complex in vitro. Nbs1 promotes Mre11/Rad50-catalyzed endo- and exonucleolytic cleavage of DNA containing 5′ adducts to generate clean double-strand break ends. |
doi_str_mv | 10.1016/j.molcel.2016.10.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1836732966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276516306335</els_id><sourcerecordid>1836732966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-68c984287d9b0ce27c4d9d103b34e3bdac4d801f01b2db958a87cbd143ad7f883</originalsourceid><addsrcrecordid>eNp9kN9P2zAQgK1paEC3_2Ca_LiXtL7ETZyXSVXXARItaLBny7EvwlVid3ZSwX-PqxYeebof-u5O9xHyHdgUGJSz7bT3ncZumqcqtaYM2CdyAayuMg4l_3zK86qcn5PLGLeMAZ-L-gs5zysBnNdwQfabJgJderfHMEQ6PCG9Hnvl6DogwOyvMnNGN6PuUEVMXL_r8JlaN3iaoJUzfrZ69u4NWCv9ZB3Shx1q21pNWx_offADWpf93izowphRD_ErOWtVF_HbKU7Ivz-rx-V1dnt3dbNc3GaaMzFkpdC14LmoTN0wjXmluakNsKIpOBaNUakWDFoGTW6aei6UqHRjgBfKVK0QxYT8PO7dBf9_xDjI3sYkrVMO_RgliKKsirwuy4TyI6qDjzFgK3fB9iq8SGDyYFxu5dG4PBg_dJPxNPbjdGFsejTvQ2-KE_DrCGD6c28xyKgtOo3GBtSDNN5-fOEVPI6TGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1836732966</pqid></control><display><type>article</type><title>Nbs1 Converts the Human Mre11/Rad50 Nuclease Complex into an Endo/Exonuclease Machine Specific for Protein-DNA Adducts</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Deshpande, Rajashree A. ; Lee, Ji-Hoon ; Arora, Sucheta ; Paull, Tanya T.</creator><creatorcontrib>Deshpande, Rajashree A. ; Lee, Ji-Hoon ; Arora, Sucheta ; Paull, Tanya T.</creatorcontrib><description>The human Mre11/Rad50/Nbs1 (hMRN) complex is critical for the sensing, processing, and signaling of DNA double-strand breaks. The nuclease activity of Mre11 is essential for mammalian development and cell viability, although the regulation and substrate specificity of Mre11 have been difficult to define. Here we show that hMRN catalyzes sequential endonucleolytic and exonucleolytic activities on both 5′ and 3′ strands of DNA ends containing protein adducts, and that Nbs1, ATP, and adducts are essential for this function. In contrast, Nbs1 inhibits Mre11/Rad50-catalyzed 3′-to-5′ exonucleolytic degradation of clean DNA ends. The hMRN endonucleolytic cleavage events are further stimulated by the phosphorylated form of the human C-terminal binding protein-interacting protein (CtIP) DNA repair enzyme, establishing a role for CtIP in regulating hMRN activity. These results illuminate the important role of Nbs1 and CtIP in determining the substrates and consequences of human Mre11/Rad50 nuclease activities on protein-DNA lesions.
[Display omitted]
•The MRN complex introduces endonucleolytic cuts in DNA adjacent to 5′ adducts•Nbs1 promotes MR exonuclease at adduct sites but blocks resection of open ends•MRN endo- and exonuclease activity targets both strands of DNA close to the adduct•MRN endonuclease activity at blocked ends is stimulated by CtIP
Deshpande et al. reconstitute processing of DNA ends containing protein adducts using human MRN complex in vitro. Nbs1 promotes Mre11/Rad50-catalyzed endo- and exonucleolytic cleavage of DNA containing 5′ adducts to generate clean double-strand break ends.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2016.10.010</identifier><identifier>PMID: 27814491</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acid Anhydride Hydrolases ; Animals ; Baculoviridae - genetics ; Baculoviridae - metabolism ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; DNA Adducts - genetics ; DNA Adducts - metabolism ; DNA Breaks, Double-Stranded ; DNA Cleavage ; DNA Repair ; DNA Repair Enzymes - genetics ; DNA Repair Enzymes - metabolism ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Endodeoxyribonucleases ; Gene Expression ; Gene Expression Regulation ; Humans ; MRE11 Homologue Protein ; Mutation ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Phosphorylation ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Sf9 Cells ; Signal Transduction ; Spodoptera ; Substrate Specificity</subject><ispartof>Molecular cell, 2016-11, Vol.64 (3), p.593-606</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-68c984287d9b0ce27c4d9d103b34e3bdac4d801f01b2db958a87cbd143ad7f883</citedby><cites>FETCH-LOGICAL-c408t-68c984287d9b0ce27c4d9d103b34e3bdac4d801f01b2db958a87cbd143ad7f883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2016.10.010$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27814491$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deshpande, Rajashree A.</creatorcontrib><creatorcontrib>Lee, Ji-Hoon</creatorcontrib><creatorcontrib>Arora, Sucheta</creatorcontrib><creatorcontrib>Paull, Tanya T.</creatorcontrib><title>Nbs1 Converts the Human Mre11/Rad50 Nuclease Complex into an Endo/Exonuclease Machine Specific for Protein-DNA Adducts</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>The human Mre11/Rad50/Nbs1 (hMRN) complex is critical for the sensing, processing, and signaling of DNA double-strand breaks. The nuclease activity of Mre11 is essential for mammalian development and cell viability, although the regulation and substrate specificity of Mre11 have been difficult to define. Here we show that hMRN catalyzes sequential endonucleolytic and exonucleolytic activities on both 5′ and 3′ strands of DNA ends containing protein adducts, and that Nbs1, ATP, and adducts are essential for this function. In contrast, Nbs1 inhibits Mre11/Rad50-catalyzed 3′-to-5′ exonucleolytic degradation of clean DNA ends. The hMRN endonucleolytic cleavage events are further stimulated by the phosphorylated form of the human C-terminal binding protein-interacting protein (CtIP) DNA repair enzyme, establishing a role for CtIP in regulating hMRN activity. These results illuminate the important role of Nbs1 and CtIP in determining the substrates and consequences of human Mre11/Rad50 nuclease activities on protein-DNA lesions.
[Display omitted]
•The MRN complex introduces endonucleolytic cuts in DNA adjacent to 5′ adducts•Nbs1 promotes MR exonuclease at adduct sites but blocks resection of open ends•MRN endo- and exonuclease activity targets both strands of DNA close to the adduct•MRN endonuclease activity at blocked ends is stimulated by CtIP
Deshpande et al. reconstitute processing of DNA ends containing protein adducts using human MRN complex in vitro. Nbs1 promotes Mre11/Rad50-catalyzed endo- and exonucleolytic cleavage of DNA containing 5′ adducts to generate clean double-strand break ends.</description><subject>Acid Anhydride Hydrolases</subject><subject>Animals</subject><subject>Baculoviridae - genetics</subject><subject>Baculoviridae - metabolism</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>DNA Adducts - genetics</subject><subject>DNA Adducts - metabolism</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA Cleavage</subject><subject>DNA Repair</subject><subject>DNA Repair Enzymes - genetics</subject><subject>DNA Repair Enzymes - metabolism</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Endodeoxyribonucleases</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation</subject><subject>Humans</subject><subject>MRE11 Homologue Protein</subject><subject>Mutation</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Phosphorylation</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sf9 Cells</subject><subject>Signal Transduction</subject><subject>Spodoptera</subject><subject>Substrate Specificity</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kN9P2zAQgK1paEC3_2Ca_LiXtL7ETZyXSVXXARItaLBny7EvwlVid3ZSwX-PqxYeebof-u5O9xHyHdgUGJSz7bT3ncZumqcqtaYM2CdyAayuMg4l_3zK86qcn5PLGLeMAZ-L-gs5zysBnNdwQfabJgJderfHMEQ6PCG9Hnvl6DogwOyvMnNGN6PuUEVMXL_r8JlaN3iaoJUzfrZ69u4NWCv9ZB3Shx1q21pNWx_offADWpf93izowphRD_ErOWtVF_HbKU7Ivz-rx-V1dnt3dbNc3GaaMzFkpdC14LmoTN0wjXmluakNsKIpOBaNUakWDFoGTW6aei6UqHRjgBfKVK0QxYT8PO7dBf9_xDjI3sYkrVMO_RgliKKsirwuy4TyI6qDjzFgK3fB9iq8SGDyYFxu5dG4PBg_dJPxNPbjdGFsejTvQ2-KE_DrCGD6c28xyKgtOo3GBtSDNN5-fOEVPI6TGw</recordid><startdate>20161103</startdate><enddate>20161103</enddate><creator>Deshpande, Rajashree A.</creator><creator>Lee, Ji-Hoon</creator><creator>Arora, Sucheta</creator><creator>Paull, Tanya T.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161103</creationdate><title>Nbs1 Converts the Human Mre11/Rad50 Nuclease Complex into an Endo/Exonuclease Machine Specific for Protein-DNA Adducts</title><author>Deshpande, Rajashree A. ; Lee, Ji-Hoon ; Arora, Sucheta ; Paull, Tanya T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-68c984287d9b0ce27c4d9d103b34e3bdac4d801f01b2db958a87cbd143ad7f883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acid Anhydride Hydrolases</topic><topic>Animals</topic><topic>Baculoviridae - genetics</topic><topic>Baculoviridae - metabolism</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>DNA Adducts - genetics</topic><topic>DNA Adducts - metabolism</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA Cleavage</topic><topic>DNA Repair</topic><topic>DNA Repair Enzymes - genetics</topic><topic>DNA Repair Enzymes - metabolism</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Endodeoxyribonucleases</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation</topic><topic>Humans</topic><topic>MRE11 Homologue Protein</topic><topic>Mutation</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Phosphorylation</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sf9 Cells</topic><topic>Signal Transduction</topic><topic>Spodoptera</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deshpande, Rajashree A.</creatorcontrib><creatorcontrib>Lee, Ji-Hoon</creatorcontrib><creatorcontrib>Arora, Sucheta</creatorcontrib><creatorcontrib>Paull, Tanya T.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deshpande, Rajashree A.</au><au>Lee, Ji-Hoon</au><au>Arora, Sucheta</au><au>Paull, Tanya T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nbs1 Converts the Human Mre11/Rad50 Nuclease Complex into an Endo/Exonuclease Machine Specific for Protein-DNA Adducts</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2016-11-03</date><risdate>2016</risdate><volume>64</volume><issue>3</issue><spage>593</spage><epage>606</epage><pages>593-606</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>The human Mre11/Rad50/Nbs1 (hMRN) complex is critical for the sensing, processing, and signaling of DNA double-strand breaks. The nuclease activity of Mre11 is essential for mammalian development and cell viability, although the regulation and substrate specificity of Mre11 have been difficult to define. Here we show that hMRN catalyzes sequential endonucleolytic and exonucleolytic activities on both 5′ and 3′ strands of DNA ends containing protein adducts, and that Nbs1, ATP, and adducts are essential for this function. In contrast, Nbs1 inhibits Mre11/Rad50-catalyzed 3′-to-5′ exonucleolytic degradation of clean DNA ends. The hMRN endonucleolytic cleavage events are further stimulated by the phosphorylated form of the human C-terminal binding protein-interacting protein (CtIP) DNA repair enzyme, establishing a role for CtIP in regulating hMRN activity. These results illuminate the important role of Nbs1 and CtIP in determining the substrates and consequences of human Mre11/Rad50 nuclease activities on protein-DNA lesions.
[Display omitted]
•The MRN complex introduces endonucleolytic cuts in DNA adjacent to 5′ adducts•Nbs1 promotes MR exonuclease at adduct sites but blocks resection of open ends•MRN endo- and exonuclease activity targets both strands of DNA close to the adduct•MRN endonuclease activity at blocked ends is stimulated by CtIP
Deshpande et al. reconstitute processing of DNA ends containing protein adducts using human MRN complex in vitro. Nbs1 promotes Mre11/Rad50-catalyzed endo- and exonucleolytic cleavage of DNA containing 5′ adducts to generate clean double-strand break ends.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27814491</pmid><doi>10.1016/j.molcel.2016.10.010</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2016-11, Vol.64 (3), p.593-606 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_proquest_miscellaneous_1836732966 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Acid Anhydride Hydrolases Animals Baculoviridae - genetics Baculoviridae - metabolism Carrier Proteins - genetics Carrier Proteins - metabolism Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism DNA Adducts - genetics DNA Adducts - metabolism DNA Breaks, Double-Stranded DNA Cleavage DNA Repair DNA Repair Enzymes - genetics DNA Repair Enzymes - metabolism DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Endodeoxyribonucleases Gene Expression Gene Expression Regulation Humans MRE11 Homologue Protein Mutation Nuclear Proteins - genetics Nuclear Proteins - metabolism Phosphorylation Recombinant Proteins - genetics Recombinant Proteins - metabolism Sf9 Cells Signal Transduction Spodoptera Substrate Specificity |
title | Nbs1 Converts the Human Mre11/Rad50 Nuclease Complex into an Endo/Exonuclease Machine Specific for Protein-DNA Adducts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nbs1%20Converts%20the%20Human%20Mre11/Rad50%20Nuclease%20Complex%20into%20an%20Endo/Exonuclease%20Machine%20Specific%20for%20Protein-DNA%20Adducts&rft.jtitle=Molecular%20cell&rft.au=Deshpande,%20Rajashree%C2%A0A.&rft.date=2016-11-03&rft.volume=64&rft.issue=3&rft.spage=593&rft.epage=606&rft.pages=593-606&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2016.10.010&rft_dat=%3Cproquest_cross%3E1836732966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1836732966&rft_id=info:pmid/27814491&rft_els_id=S1097276516306335&rfr_iscdi=true |