Transparent conducting ZnO-CdO mixed oxide thin films grown by the sol-gel method
[Display omitted] Mixed oxides of zinc and cadmium with different proportions were deposited on ordinary glass substrates using the sol-gel spin coating method under optimized deposition conditions using zinc acetate dihydrate and cadmium acetate dihydrate as precursors. X-ray diffraction patterns c...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2017-02, Vol.487, p.378-387 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 387 |
---|---|
container_issue | |
container_start_page | 378 |
container_title | Journal of colloid and interface science |
container_volume | 487 |
creator | Pathak, Trilok K. Rajput, Jeevitesh K. Kumar, Vinod Purohit, L.P. Swart, H.C. Kroon, R.E. |
description | [Display omitted]
Mixed oxides of zinc and cadmium with different proportions were deposited on ordinary glass substrates using the sol-gel spin coating method under optimized deposition conditions using zinc acetate dihydrate and cadmium acetate dihydrate as precursors. X-ray diffraction patterns confirmed the polycrystalline nature of the films. A combination of cubic CdO and hexagonal wurtzite ZnO phases was observed. The oxidation states of Zn, Cd and O in the deposited films were determined by X-ray photoelectron spectroscopic studies. Surface morphology was studied by scanning electron microscopy and atomic force microscopy. The compositional analysis of the thin films was studied by secondary ion mass spectroscopy. The transmittance of the thin films was measured in the range 300–800nm and the optical bandgap was calculated using Tauc’s plot method. The bandgap decreased from 3.15eV to 2.15eV with increasing CdO content. The light emission properties of the ZnO:CdO thin films were studied by photoluminescence spectra recorded at room temperature. The current-voltage characteristics were also assessed and showed ohmic behaviour. The resistance decreased with increasing CdO content. |
doi_str_mv | 10.1016/j.jcis.2016.10.062 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1836731830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979716308293</els_id><sourcerecordid>1836731830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-fcae19e8a86e05124bdf1bccff3213dc1d3cef7b659c4b4f79c34366a99e9e233</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMotlb_gAvJ0s3UZDKTacCNFF9QKELduAkzyU2bMpPUZOrj35vS6tLNvZfDOQfuh9AlJWNKKL9Zj9fKxnGe7iSMCc-P0JASUWYVJewYDQnJaSYqUQ3QWYxrQigtS3GKBnk1oaQkfIheFqF2cVMHcD1W3umt6q1b4jc3z6Z6jjv7BRr7L6sB9yvrsLFtF_Ey-E-Hm--kAY6-zZbQ4g76ldfn6MTUbYSLwx6h14f7xfQpm80fn6d3s0wVnPWZUTVQAZN6woGUNC8abWijlDEsp0wrqpkCUzW8FKpoClMJxQrGeS0ECMgZG6Hrfe8m-PctxF52Nipo29qB30ZJJ4xXLE2SrPneqoKPMYCRm2C7OnxLSuQOpVzLHUq5Q7nTEsoUujr0b5sO9F_kl10y3O4NkL78sBBkVBacAm0DqF5qb__r_wFk3oVz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1836731830</pqid></control><display><type>article</type><title>Transparent conducting ZnO-CdO mixed oxide thin films grown by the sol-gel method</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Pathak, Trilok K. ; Rajput, Jeevitesh K. ; Kumar, Vinod ; Purohit, L.P. ; Swart, H.C. ; Kroon, R.E.</creator><creatorcontrib>Pathak, Trilok K. ; Rajput, Jeevitesh K. ; Kumar, Vinod ; Purohit, L.P. ; Swart, H.C. ; Kroon, R.E.</creatorcontrib><description>[Display omitted]
Mixed oxides of zinc and cadmium with different proportions were deposited on ordinary glass substrates using the sol-gel spin coating method under optimized deposition conditions using zinc acetate dihydrate and cadmium acetate dihydrate as precursors. X-ray diffraction patterns confirmed the polycrystalline nature of the films. A combination of cubic CdO and hexagonal wurtzite ZnO phases was observed. The oxidation states of Zn, Cd and O in the deposited films were determined by X-ray photoelectron spectroscopic studies. Surface morphology was studied by scanning electron microscopy and atomic force microscopy. The compositional analysis of the thin films was studied by secondary ion mass spectroscopy. The transmittance of the thin films was measured in the range 300–800nm and the optical bandgap was calculated using Tauc’s plot method. The bandgap decreased from 3.15eV to 2.15eV with increasing CdO content. The light emission properties of the ZnO:CdO thin films were studied by photoluminescence spectra recorded at room temperature. The current-voltage characteristics were also assessed and showed ohmic behaviour. The resistance decreased with increasing CdO content.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2016.10.062</identifier><identifier>PMID: 27810506</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Electrical properties ; Optical properties ; Sol-gel ; Thin film ; X-ray diffraction</subject><ispartof>Journal of colloid and interface science, 2017-02, Vol.487, p.378-387</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-fcae19e8a86e05124bdf1bccff3213dc1d3cef7b659c4b4f79c34366a99e9e233</citedby><cites>FETCH-LOGICAL-c463t-fcae19e8a86e05124bdf1bccff3213dc1d3cef7b659c4b4f79c34366a99e9e233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2016.10.062$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27810506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pathak, Trilok K.</creatorcontrib><creatorcontrib>Rajput, Jeevitesh K.</creatorcontrib><creatorcontrib>Kumar, Vinod</creatorcontrib><creatorcontrib>Purohit, L.P.</creatorcontrib><creatorcontrib>Swart, H.C.</creatorcontrib><creatorcontrib>Kroon, R.E.</creatorcontrib><title>Transparent conducting ZnO-CdO mixed oxide thin films grown by the sol-gel method</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted]
Mixed oxides of zinc and cadmium with different proportions were deposited on ordinary glass substrates using the sol-gel spin coating method under optimized deposition conditions using zinc acetate dihydrate and cadmium acetate dihydrate as precursors. X-ray diffraction patterns confirmed the polycrystalline nature of the films. A combination of cubic CdO and hexagonal wurtzite ZnO phases was observed. The oxidation states of Zn, Cd and O in the deposited films were determined by X-ray photoelectron spectroscopic studies. Surface morphology was studied by scanning electron microscopy and atomic force microscopy. The compositional analysis of the thin films was studied by secondary ion mass spectroscopy. The transmittance of the thin films was measured in the range 300–800nm and the optical bandgap was calculated using Tauc’s plot method. The bandgap decreased from 3.15eV to 2.15eV with increasing CdO content. The light emission properties of the ZnO:CdO thin films were studied by photoluminescence spectra recorded at room temperature. The current-voltage characteristics were also assessed and showed ohmic behaviour. The resistance decreased with increasing CdO content.</description><subject>Electrical properties</subject><subject>Optical properties</subject><subject>Sol-gel</subject><subject>Thin film</subject><subject>X-ray diffraction</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMotlb_gAvJ0s3UZDKTacCNFF9QKELduAkzyU2bMpPUZOrj35vS6tLNvZfDOQfuh9AlJWNKKL9Zj9fKxnGe7iSMCc-P0JASUWYVJewYDQnJaSYqUQ3QWYxrQigtS3GKBnk1oaQkfIheFqF2cVMHcD1W3umt6q1b4jc3z6Z6jjv7BRr7L6sB9yvrsLFtF_Ey-E-Hm--kAY6-zZbQ4g76ldfn6MTUbYSLwx6h14f7xfQpm80fn6d3s0wVnPWZUTVQAZN6woGUNC8abWijlDEsp0wrqpkCUzW8FKpoClMJxQrGeS0ECMgZG6Hrfe8m-PctxF52Nipo29qB30ZJJ4xXLE2SrPneqoKPMYCRm2C7OnxLSuQOpVzLHUq5Q7nTEsoUujr0b5sO9F_kl10y3O4NkL78sBBkVBacAm0DqF5qb__r_wFk3oVz</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Pathak, Trilok K.</creator><creator>Rajput, Jeevitesh K.</creator><creator>Kumar, Vinod</creator><creator>Purohit, L.P.</creator><creator>Swart, H.C.</creator><creator>Kroon, R.E.</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170201</creationdate><title>Transparent conducting ZnO-CdO mixed oxide thin films grown by the sol-gel method</title><author>Pathak, Trilok K. ; Rajput, Jeevitesh K. ; Kumar, Vinod ; Purohit, L.P. ; Swart, H.C. ; Kroon, R.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-fcae19e8a86e05124bdf1bccff3213dc1d3cef7b659c4b4f79c34366a99e9e233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Electrical properties</topic><topic>Optical properties</topic><topic>Sol-gel</topic><topic>Thin film</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pathak, Trilok K.</creatorcontrib><creatorcontrib>Rajput, Jeevitesh K.</creatorcontrib><creatorcontrib>Kumar, Vinod</creatorcontrib><creatorcontrib>Purohit, L.P.</creatorcontrib><creatorcontrib>Swart, H.C.</creatorcontrib><creatorcontrib>Kroon, R.E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pathak, Trilok K.</au><au>Rajput, Jeevitesh K.</au><au>Kumar, Vinod</au><au>Purohit, L.P.</au><au>Swart, H.C.</au><au>Kroon, R.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transparent conducting ZnO-CdO mixed oxide thin films grown by the sol-gel method</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>487</volume><spage>378</spage><epage>387</epage><pages>378-387</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted]
Mixed oxides of zinc and cadmium with different proportions were deposited on ordinary glass substrates using the sol-gel spin coating method under optimized deposition conditions using zinc acetate dihydrate and cadmium acetate dihydrate as precursors. X-ray diffraction patterns confirmed the polycrystalline nature of the films. A combination of cubic CdO and hexagonal wurtzite ZnO phases was observed. The oxidation states of Zn, Cd and O in the deposited films were determined by X-ray photoelectron spectroscopic studies. Surface morphology was studied by scanning electron microscopy and atomic force microscopy. The compositional analysis of the thin films was studied by secondary ion mass spectroscopy. The transmittance of the thin films was measured in the range 300–800nm and the optical bandgap was calculated using Tauc’s plot method. The bandgap decreased from 3.15eV to 2.15eV with increasing CdO content. The light emission properties of the ZnO:CdO thin films were studied by photoluminescence spectra recorded at room temperature. The current-voltage characteristics were also assessed and showed ohmic behaviour. The resistance decreased with increasing CdO content.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27810506</pmid><doi>10.1016/j.jcis.2016.10.062</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2017-02, Vol.487, p.378-387 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_1836731830 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Electrical properties Optical properties Sol-gel Thin film X-ray diffraction |
title | Transparent conducting ZnO-CdO mixed oxide thin films grown by the sol-gel method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A09%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transparent%20conducting%20ZnO-CdO%20mixed%20oxide%20thin%20films%20grown%20by%20the%20sol-gel%20method&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Pathak,%20Trilok%20K.&rft.date=2017-02-01&rft.volume=487&rft.spage=378&rft.epage=387&rft.pages=378-387&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2016.10.062&rft_dat=%3Cproquest_cross%3E1836731830%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1836731830&rft_id=info:pmid/27810506&rft_els_id=S0021979716308293&rfr_iscdi=true |