Spectral Sensitivity of Vision and Bioluminescence in the Midwater Shrimp Sergestes similis

In the oceanic midwater environment, many fish, squid, and shrimp use luminescent countershading to remain cryptic to silhouette-scanning predators. The mid-water penaeid shrimp, Sergestes similis Hansen, responds to downward-directed light with a dim bioluminescence that dynamically matches the spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Biological bulletin 1999-12, Vol.197 (3), p.348-360
Hauptverfasser: Lindsay, S. M., Frank, T. M., Kent, J., Partridge, J. C., Latz, M. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 360
container_issue 3
container_start_page 348
container_title The Biological bulletin
container_volume 197
creator Lindsay, S. M.
Frank, T. M.
Kent, J.
Partridge, J. C.
Latz, M. I.
description In the oceanic midwater environment, many fish, squid, and shrimp use luminescent countershading to remain cryptic to silhouette-scanning predators. The mid-water penaeid shrimp, Sergestes similis Hansen, responds to downward-directed light with a dim bioluminescence that dynamically matches the spectral radiance of oceanic down-welling light at depth. Although the sensory basis of luminescent countershading behavior is visual, the relationship between visual and behavioral sensitivity is poorly understood. In this study, visual spectral sensitivity, based on microspectrophotometry and electrophysiological measurements of photoreceptor response, is directly compared to the behavioral spectral efficiency of luminescent countershading. Microspectrophotometric measurements on single photoreceptors revealed only a single visual pigment with peak absorbance at 495 nm in the blue-green region of the spectrum. The peak electrophysiological spectral sensitivity of dark-adapted eyes was centered at about 500 nm. The spectral efficiency of luminescent countershading showed a broad peak from 480 to 520 nm. Both electrophysiological and behavioral data closely matched the normalized spectral absorptance curve of a rhodopsin with λ max = 495 nm, when rhabdom length and photopigment specific absorbance were considered. The close coupling between visual spectral sensitivity and the spectral efficiency of luminescent countershading attests to the importance of bioluminescence as a camouflage strategy in this species.
doi_str_mv 10.2307/1542789
format Article
fullrecord <record><control><sourceid>gale_smith</sourceid><recordid>TN_cdi_proquest_miscellaneous_1836725176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A59176777</galeid><jstor_id>1542789</jstor_id><sourcerecordid>A59176777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c740t-458be3a4a05c2c38af8fe91a71bce347f339aef07b9a2c258b133747d74b3c3d3</originalsourceid><addsrcrecordid>eNqN0s2O0zAQAOAIgdilIN4ARQjBHjZgx0mcHJcKlkqFPRS4cLAcZ5JOldjFdgp9e1ylB4oKQj5YHn0aa36i6Cklr1NG-BuaZykvq3vRJa1YlZRFxe9Hl4SQImG0zC-iR85twpOkNHsYXVBSMMJYcRl9W21BeSv7eAXaoccd-n1s2vgrOjQ6lrqJ36LpxwE1OAVaQYw69muIP2LzQ3qw8WptcdiGBLYD58HFDgfs0T2OHrSyd_DkeM-iL-_ffZ5_SJZ3t4v5zTJRPCM-yfKyBiYzSXKVKlbKtmyhopLTWgHLeMtYJaElvK5kqtKgKWM84w3PaqZYw2bRYsrrBvRrZzRKLWo0De7Ahpr2YpcKI_Ek1mNtpd0LYzuxldYLWmWhJbPoasq1teb7GMoRA4ay-15qMKMTtGQFT3PKi0Bf_pvynJQFzQJ8_gfcmNHq0BKRpqQqCMl4QNcT6mQPAnVrwlRUBxrCcIyGFkP4Jq_Cz5wfeHKGh9PAgOqcvzrxgXj46Ts5OicWq0__S8vb5Qm9PkeV6XvoQIQpz-9O-KuJK2ucs9CKbdicwxQoEYc9Fsc9DvLZsWVjPUDzm5sWN4AXE9g4b-xf8_wCI3f3Rw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>220960047</pqid></control><display><type>article</type><title>Spectral Sensitivity of Vision and Bioluminescence in the Midwater Shrimp Sergestes similis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><creator>Lindsay, S. M. ; Frank, T. M. ; Kent, J. ; Partridge, J. C. ; Latz, M. I.</creator><creatorcontrib>Lindsay, S. M. ; Frank, T. M. ; Kent, J. ; Partridge, J. C. ; Latz, M. I.</creatorcontrib><description>In the oceanic midwater environment, many fish, squid, and shrimp use luminescent countershading to remain cryptic to silhouette-scanning predators. The mid-water penaeid shrimp, Sergestes similis Hansen, responds to downward-directed light with a dim bioluminescence that dynamically matches the spectral radiance of oceanic down-welling light at depth. Although the sensory basis of luminescent countershading behavior is visual, the relationship between visual and behavioral sensitivity is poorly understood. In this study, visual spectral sensitivity, based on microspectrophotometry and electrophysiological measurements of photoreceptor response, is directly compared to the behavioral spectral efficiency of luminescent countershading. Microspectrophotometric measurements on single photoreceptors revealed only a single visual pigment with peak absorbance at 495 nm in the blue-green region of the spectrum. The peak electrophysiological spectral sensitivity of dark-adapted eyes was centered at about 500 nm. The spectral efficiency of luminescent countershading showed a broad peak from 480 to 520 nm. Both electrophysiological and behavioral data closely matched the normalized spectral absorptance curve of a rhodopsin with λ max = 495 nm, when rhabdom length and photopigment specific absorbance were considered. The close coupling between visual spectral sensitivity and the spectral efficiency of luminescent countershading attests to the importance of bioluminescence as a camouflage strategy in this species.</description><identifier>ISSN: 0006-3185</identifier><identifier>EISSN: 1939-8697</identifier><identifier>DOI: 10.2307/1542789</identifier><identifier>PMID: 10630336</identifier><language>eng</language><publisher>United States: Marine Biological Laboratory</publisher><subject>Absorption spectra ; Animals ; Bioluminescence ; Camouflage (Biology) ; Crustaceans ; Eyes &amp; eyesight ; Irradiance ; Marine ; Marine biology ; Mental stimulation ; Neurobiology and Behavior ; Photons ; Retinal pigments ; Sergestes similis ; Spectral sensitivity ; Visible spectrum ; Wavelengths</subject><ispartof>The Biological bulletin, 1999-12, Vol.197 (3), p.348-360</ispartof><rights>COPYRIGHT 1999 University of Chicago Press</rights><rights>COPYRIGHT 1999 University of Chicago Press</rights><rights>Copyright Marine Biological Laboratory Dec 1999</rights><rights>In copyright. Digitized with the permission of the rights holder. http://creativecommons.org/licenses/by-nc-sa/3.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c740t-458be3a4a05c2c38af8fe91a71bce347f339aef07b9a2c258b133747d74b3c3d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1542789$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1542789$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10630336$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lindsay, S. M.</creatorcontrib><creatorcontrib>Frank, T. M.</creatorcontrib><creatorcontrib>Kent, J.</creatorcontrib><creatorcontrib>Partridge, J. C.</creatorcontrib><creatorcontrib>Latz, M. I.</creatorcontrib><title>Spectral Sensitivity of Vision and Bioluminescence in the Midwater Shrimp Sergestes similis</title><title>The Biological bulletin</title><addtitle>Biol Bull</addtitle><description>In the oceanic midwater environment, many fish, squid, and shrimp use luminescent countershading to remain cryptic to silhouette-scanning predators. The mid-water penaeid shrimp, Sergestes similis Hansen, responds to downward-directed light with a dim bioluminescence that dynamically matches the spectral radiance of oceanic down-welling light at depth. Although the sensory basis of luminescent countershading behavior is visual, the relationship between visual and behavioral sensitivity is poorly understood. In this study, visual spectral sensitivity, based on microspectrophotometry and electrophysiological measurements of photoreceptor response, is directly compared to the behavioral spectral efficiency of luminescent countershading. Microspectrophotometric measurements on single photoreceptors revealed only a single visual pigment with peak absorbance at 495 nm in the blue-green region of the spectrum. The peak electrophysiological spectral sensitivity of dark-adapted eyes was centered at about 500 nm. The spectral efficiency of luminescent countershading showed a broad peak from 480 to 520 nm. Both electrophysiological and behavioral data closely matched the normalized spectral absorptance curve of a rhodopsin with λ max = 495 nm, when rhabdom length and photopigment specific absorbance were considered. The close coupling between visual spectral sensitivity and the spectral efficiency of luminescent countershading attests to the importance of bioluminescence as a camouflage strategy in this species.</description><subject>Absorption spectra</subject><subject>Animals</subject><subject>Bioluminescence</subject><subject>Camouflage (Biology)</subject><subject>Crustaceans</subject><subject>Eyes &amp; eyesight</subject><subject>Irradiance</subject><subject>Marine</subject><subject>Marine biology</subject><subject>Mental stimulation</subject><subject>Neurobiology and Behavior</subject><subject>Photons</subject><subject>Retinal pigments</subject><subject>Sergestes similis</subject><subject>Spectral sensitivity</subject><subject>Visible spectrum</subject><subject>Wavelengths</subject><issn>0006-3185</issn><issn>1939-8697</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>79B</sourceid><recordid>eNqN0s2O0zAQAOAIgdilIN4ARQjBHjZgx0mcHJcKlkqFPRS4cLAcZ5JOldjFdgp9e1ylB4oKQj5YHn0aa36i6Cklr1NG-BuaZykvq3vRJa1YlZRFxe9Hl4SQImG0zC-iR85twpOkNHsYXVBSMMJYcRl9W21BeSv7eAXaoccd-n1s2vgrOjQ6lrqJ36LpxwE1OAVaQYw69muIP2LzQ3qw8WptcdiGBLYD58HFDgfs0T2OHrSyd_DkeM-iL-_ffZ5_SJZ3t4v5zTJRPCM-yfKyBiYzSXKVKlbKtmyhopLTWgHLeMtYJaElvK5kqtKgKWM84w3PaqZYw2bRYsrrBvRrZzRKLWo0De7Ahpr2YpcKI_Ek1mNtpd0LYzuxldYLWmWhJbPoasq1teb7GMoRA4ay-15qMKMTtGQFT3PKi0Bf_pvynJQFzQJ8_gfcmNHq0BKRpqQqCMl4QNcT6mQPAnVrwlRUBxrCcIyGFkP4Jq_Cz5wfeHKGh9PAgOqcvzrxgXj46Ts5OicWq0__S8vb5Qm9PkeV6XvoQIQpz-9O-KuJK2ucs9CKbdicwxQoEYc9Fsc9DvLZsWVjPUDzm5sWN4AXE9g4b-xf8_wCI3f3Rw</recordid><startdate>19991201</startdate><enddate>19991201</enddate><creator>Lindsay, S. M.</creator><creator>Frank, T. M.</creator><creator>Kent, J.</creator><creator>Partridge, J. C.</creator><creator>Latz, M. I.</creator><general>Marine Biological Laboratory</general><general>University of Chicago Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>ISN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TN</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>79B</scope></search><sort><creationdate>19991201</creationdate><title>Spectral Sensitivity of Vision and Bioluminescence in the Midwater Shrimp Sergestes similis</title><author>Lindsay, S. M. ; Frank, T. M. ; Kent, J. ; Partridge, J. C. ; Latz, M. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c740t-458be3a4a05c2c38af8fe91a71bce347f339aef07b9a2c258b133747d74b3c3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Absorption spectra</topic><topic>Animals</topic><topic>Bioluminescence</topic><topic>Camouflage (Biology)</topic><topic>Crustaceans</topic><topic>Eyes &amp; eyesight</topic><topic>Irradiance</topic><topic>Marine</topic><topic>Marine biology</topic><topic>Mental stimulation</topic><topic>Neurobiology and Behavior</topic><topic>Photons</topic><topic>Retinal pigments</topic><topic>Sergestes similis</topic><topic>Spectral sensitivity</topic><topic>Visible spectrum</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindsay, S. M.</creatorcontrib><creatorcontrib>Frank, T. M.</creatorcontrib><creatorcontrib>Kent, J.</creatorcontrib><creatorcontrib>Partridge, J. C.</creatorcontrib><creatorcontrib>Latz, M. I.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Canada</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biodiversity Heritage Library</collection><jtitle>The Biological bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindsay, S. M.</au><au>Frank, T. M.</au><au>Kent, J.</au><au>Partridge, J. C.</au><au>Latz, M. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Sensitivity of Vision and Bioluminescence in the Midwater Shrimp Sergestes similis</atitle><jtitle>The Biological bulletin</jtitle><addtitle>Biol Bull</addtitle><date>1999-12-01</date><risdate>1999</risdate><volume>197</volume><issue>3</issue><spage>348</spage><epage>360</epage><pages>348-360</pages><issn>0006-3185</issn><eissn>1939-8697</eissn><abstract>In the oceanic midwater environment, many fish, squid, and shrimp use luminescent countershading to remain cryptic to silhouette-scanning predators. The mid-water penaeid shrimp, Sergestes similis Hansen, responds to downward-directed light with a dim bioluminescence that dynamically matches the spectral radiance of oceanic down-welling light at depth. Although the sensory basis of luminescent countershading behavior is visual, the relationship between visual and behavioral sensitivity is poorly understood. In this study, visual spectral sensitivity, based on microspectrophotometry and electrophysiological measurements of photoreceptor response, is directly compared to the behavioral spectral efficiency of luminescent countershading. Microspectrophotometric measurements on single photoreceptors revealed only a single visual pigment with peak absorbance at 495 nm in the blue-green region of the spectrum. The peak electrophysiological spectral sensitivity of dark-adapted eyes was centered at about 500 nm. The spectral efficiency of luminescent countershading showed a broad peak from 480 to 520 nm. Both electrophysiological and behavioral data closely matched the normalized spectral absorptance curve of a rhodopsin with λ max = 495 nm, when rhabdom length and photopigment specific absorbance were considered. The close coupling between visual spectral sensitivity and the spectral efficiency of luminescent countershading attests to the importance of bioluminescence as a camouflage strategy in this species.</abstract><cop>United States</cop><pub>Marine Biological Laboratory</pub><pmid>10630336</pmid><doi>10.2307/1542789</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3185
ispartof The Biological bulletin, 1999-12, Vol.197 (3), p.348-360
issn 0006-3185
1939-8697
language eng
recordid cdi_proquest_miscellaneous_1836725176
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy
subjects Absorption spectra
Animals
Bioluminescence
Camouflage (Biology)
Crustaceans
Eyes & eyesight
Irradiance
Marine
Marine biology
Mental stimulation
Neurobiology and Behavior
Photons
Retinal pigments
Sergestes similis
Spectral sensitivity
Visible spectrum
Wavelengths
title Spectral Sensitivity of Vision and Bioluminescence in the Midwater Shrimp Sergestes similis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_smith&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Sensitivity%20of%20Vision%20and%20Bioluminescence%20in%20the%20Midwater%20Shrimp%20Sergestes%20similis&rft.jtitle=The%20Biological%20bulletin&rft.au=Lindsay,%20S.%20M.&rft.date=1999-12-01&rft.volume=197&rft.issue=3&rft.spage=348&rft.epage=360&rft.pages=348-360&rft.issn=0006-3185&rft.eissn=1939-8697&rft_id=info:doi/10.2307/1542789&rft_dat=%3Cgale_smith%3EA59176777%3C/gale_smith%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=220960047&rft_id=info:pmid/10630336&rft_galeid=A59176777&rft_jstor_id=1542789&rfr_iscdi=true