Post passivation light trapping back contacts for silicon heterojunction solar cells

Light trapping in crystalline silicon (c-Si) solar cells is an essential building block for high efficiency solar cells targeting low material consumption and low costs. In this study, we present the successful implementation of highly efficient light-trapping back contacts, subsequent to the passiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2016-11, Vol.8 (44), p.18726-18733
Hauptverfasser: Smeets, M, Bittkau, K, Lentz, F, Richter, A, Ding, K, Carius, R, Rau, U, Paetzold, U W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18733
container_issue 44
container_start_page 18726
container_title Nanoscale
container_volume 8
creator Smeets, M
Bittkau, K
Lentz, F
Richter, A
Ding, K
Carius, R
Rau, U
Paetzold, U W
description Light trapping in crystalline silicon (c-Si) solar cells is an essential building block for high efficiency solar cells targeting low material consumption and low costs. In this study, we present the successful implementation of highly efficient light-trapping back contacts, subsequent to the passivation of Si heterojunction solar cells. The back contacts are realized by texturing an amorphous silicon layer with a refractive index close to the one of crystalline silicon at the back side of the silicon wafer. As a result, decoupling of optically active and electrically active layers is introduced. In the long run, the presented concept has the potential to improve light trapping in monolithic Si multijunction solar cells as well as solar cell configurations where texturing of the Si absorber surfaces usually results in a deterioration of the electrical properties. As part of this study, different light-trapping textures were applied to prototype silicon heterojunction solar cells. The best path length enhancement factors, at high passivation quality, were obtained with light-trapping textures based on randomly distributed craters. Comparing a planar reference solar cell with an absorber thickness of 280 μm and additional anti-reflection coating, the short-circuit current density (J ) improves for a similar solar cell with light-trapping back contact. Due to the light trapping back contact, the J is enhanced around 1.8 mA cm to 38.5 mA cm due to light trapping in the wavelength range between 1000 nm and 1150 nm.
doi_str_mv 10.1039/c6nr04960e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835689269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835689269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-a9a344ef2067e92003afcb494d2f9301d63b4a09a5cd55077edd6911cb4563493</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMobk5v_AGSSxGqp0maNJcyNhWGiszrkqbpltk1NUkF_737clfncHjel8OD0HUK9ylQ-aB564FJDuYEDQkwSCgV5PS4czZAFyGsALiknJ6jAREiFxmlQzR_dyHiToVgf1S0rsWNXSwjjl51nW0XuFT6C2vXRqVjwLXzONjGbg54aaLxbtW3epcLrlEea9M04RKd1aoJ5uowR-hzOpmPn5PZ29PL-HGWaJKLmCipKGOmJsCFkQSAqlqXTLKK1JJCWnFaMgVSZbrKMhDCVBWXabphMk6ZpCN0u-_tvPvuTYjF2obtB6o1rg9FmtOM55LwLXq3R7V3IXhTF523a-V_ixSKrcVizF8_dhYnG_jm0NuXa1Md0X9t9A_fqm3J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835689269</pqid></control><display><type>article</type><title>Post passivation light trapping back contacts for silicon heterojunction solar cells</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Smeets, M ; Bittkau, K ; Lentz, F ; Richter, A ; Ding, K ; Carius, R ; Rau, U ; Paetzold, U W</creator><creatorcontrib>Smeets, M ; Bittkau, K ; Lentz, F ; Richter, A ; Ding, K ; Carius, R ; Rau, U ; Paetzold, U W</creatorcontrib><description>Light trapping in crystalline silicon (c-Si) solar cells is an essential building block for high efficiency solar cells targeting low material consumption and low costs. In this study, we present the successful implementation of highly efficient light-trapping back contacts, subsequent to the passivation of Si heterojunction solar cells. The back contacts are realized by texturing an amorphous silicon layer with a refractive index close to the one of crystalline silicon at the back side of the silicon wafer. As a result, decoupling of optically active and electrically active layers is introduced. In the long run, the presented concept has the potential to improve light trapping in monolithic Si multijunction solar cells as well as solar cell configurations where texturing of the Si absorber surfaces usually results in a deterioration of the electrical properties. As part of this study, different light-trapping textures were applied to prototype silicon heterojunction solar cells. The best path length enhancement factors, at high passivation quality, were obtained with light-trapping textures based on randomly distributed craters. Comparing a planar reference solar cell with an absorber thickness of 280 μm and additional anti-reflection coating, the short-circuit current density (J ) improves for a similar solar cell with light-trapping back contact. Due to the light trapping back contact, the J is enhanced around 1.8 mA cm to 38.5 mA cm due to light trapping in the wavelength range between 1000 nm and 1150 nm.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c6nr04960e</identifier><identifier>PMID: 27787533</identifier><language>eng</language><publisher>England</publisher><ispartof>Nanoscale, 2016-11, Vol.8 (44), p.18726-18733</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-a9a344ef2067e92003afcb494d2f9301d63b4a09a5cd55077edd6911cb4563493</citedby><cites>FETCH-LOGICAL-c287t-a9a344ef2067e92003afcb494d2f9301d63b4a09a5cd55077edd6911cb4563493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27787533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smeets, M</creatorcontrib><creatorcontrib>Bittkau, K</creatorcontrib><creatorcontrib>Lentz, F</creatorcontrib><creatorcontrib>Richter, A</creatorcontrib><creatorcontrib>Ding, K</creatorcontrib><creatorcontrib>Carius, R</creatorcontrib><creatorcontrib>Rau, U</creatorcontrib><creatorcontrib>Paetzold, U W</creatorcontrib><title>Post passivation light trapping back contacts for silicon heterojunction solar cells</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Light trapping in crystalline silicon (c-Si) solar cells is an essential building block for high efficiency solar cells targeting low material consumption and low costs. In this study, we present the successful implementation of highly efficient light-trapping back contacts, subsequent to the passivation of Si heterojunction solar cells. The back contacts are realized by texturing an amorphous silicon layer with a refractive index close to the one of crystalline silicon at the back side of the silicon wafer. As a result, decoupling of optically active and electrically active layers is introduced. In the long run, the presented concept has the potential to improve light trapping in monolithic Si multijunction solar cells as well as solar cell configurations where texturing of the Si absorber surfaces usually results in a deterioration of the electrical properties. As part of this study, different light-trapping textures were applied to prototype silicon heterojunction solar cells. The best path length enhancement factors, at high passivation quality, were obtained with light-trapping textures based on randomly distributed craters. Comparing a planar reference solar cell with an absorber thickness of 280 μm and additional anti-reflection coating, the short-circuit current density (J ) improves for a similar solar cell with light-trapping back contact. Due to the light trapping back contact, the J is enhanced around 1.8 mA cm to 38.5 mA cm due to light trapping in the wavelength range between 1000 nm and 1150 nm.</description><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMobk5v_AGSSxGqp0maNJcyNhWGiszrkqbpltk1NUkF_737clfncHjel8OD0HUK9ylQ-aB564FJDuYEDQkwSCgV5PS4czZAFyGsALiknJ6jAREiFxmlQzR_dyHiToVgf1S0rsWNXSwjjl51nW0XuFT6C2vXRqVjwLXzONjGbg54aaLxbtW3epcLrlEea9M04RKd1aoJ5uowR-hzOpmPn5PZ29PL-HGWaJKLmCipKGOmJsCFkQSAqlqXTLKK1JJCWnFaMgVSZbrKMhDCVBWXabphMk6ZpCN0u-_tvPvuTYjF2obtB6o1rg9FmtOM55LwLXq3R7V3IXhTF523a-V_ixSKrcVizF8_dhYnG_jm0NuXa1Md0X9t9A_fqm3J</recordid><startdate>20161110</startdate><enddate>20161110</enddate><creator>Smeets, M</creator><creator>Bittkau, K</creator><creator>Lentz, F</creator><creator>Richter, A</creator><creator>Ding, K</creator><creator>Carius, R</creator><creator>Rau, U</creator><creator>Paetzold, U W</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161110</creationdate><title>Post passivation light trapping back contacts for silicon heterojunction solar cells</title><author>Smeets, M ; Bittkau, K ; Lentz, F ; Richter, A ; Ding, K ; Carius, R ; Rau, U ; Paetzold, U W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-a9a344ef2067e92003afcb494d2f9301d63b4a09a5cd55077edd6911cb4563493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smeets, M</creatorcontrib><creatorcontrib>Bittkau, K</creatorcontrib><creatorcontrib>Lentz, F</creatorcontrib><creatorcontrib>Richter, A</creatorcontrib><creatorcontrib>Ding, K</creatorcontrib><creatorcontrib>Carius, R</creatorcontrib><creatorcontrib>Rau, U</creatorcontrib><creatorcontrib>Paetzold, U W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smeets, M</au><au>Bittkau, K</au><au>Lentz, F</au><au>Richter, A</au><au>Ding, K</au><au>Carius, R</au><au>Rau, U</au><au>Paetzold, U W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post passivation light trapping back contacts for silicon heterojunction solar cells</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2016-11-10</date><risdate>2016</risdate><volume>8</volume><issue>44</issue><spage>18726</spage><epage>18733</epage><pages>18726-18733</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Light trapping in crystalline silicon (c-Si) solar cells is an essential building block for high efficiency solar cells targeting low material consumption and low costs. In this study, we present the successful implementation of highly efficient light-trapping back contacts, subsequent to the passivation of Si heterojunction solar cells. The back contacts are realized by texturing an amorphous silicon layer with a refractive index close to the one of crystalline silicon at the back side of the silicon wafer. As a result, decoupling of optically active and electrically active layers is introduced. In the long run, the presented concept has the potential to improve light trapping in monolithic Si multijunction solar cells as well as solar cell configurations where texturing of the Si absorber surfaces usually results in a deterioration of the electrical properties. As part of this study, different light-trapping textures were applied to prototype silicon heterojunction solar cells. The best path length enhancement factors, at high passivation quality, were obtained with light-trapping textures based on randomly distributed craters. Comparing a planar reference solar cell with an absorber thickness of 280 μm and additional anti-reflection coating, the short-circuit current density (J ) improves for a similar solar cell with light-trapping back contact. Due to the light trapping back contact, the J is enhanced around 1.8 mA cm to 38.5 mA cm due to light trapping in the wavelength range between 1000 nm and 1150 nm.</abstract><cop>England</cop><pmid>27787533</pmid><doi>10.1039/c6nr04960e</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2016-11, Vol.8 (44), p.18726-18733
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_1835689269
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Post passivation light trapping back contacts for silicon heterojunction solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post%20passivation%20light%20trapping%20back%20contacts%20for%20silicon%20heterojunction%20solar%20cells&rft.jtitle=Nanoscale&rft.au=Smeets,%20M&rft.date=2016-11-10&rft.volume=8&rft.issue=44&rft.spage=18726&rft.epage=18733&rft.pages=18726-18733&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c6nr04960e&rft_dat=%3Cproquest_cross%3E1835689269%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835689269&rft_id=info:pmid/27787533&rfr_iscdi=true