Dynamic Response and Dynamic Failure Mode of a Weak Intercalated Rock Slope Using a Shaking Table

A large-scale shaking table test was performed to study the dynamic response of slopes parallel to geological bedding (bedding slopes) and slopes that cross-cut geological bedding (counter-bedding slopes). The test results show that the acceleration amplification coefficients increase with increasin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rock mechanics and rock engineering 2016-08, Vol.49 (8), p.3243-3256
Hauptverfasser: Fan, Gang, Zhang, Jianjing, Wu, Jinbiao, Yan, Kongming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3256
container_issue 8
container_start_page 3243
container_title Rock mechanics and rock engineering
container_volume 49
creator Fan, Gang
Zhang, Jianjing
Wu, Jinbiao
Yan, Kongming
description A large-scale shaking table test was performed to study the dynamic response of slopes parallel to geological bedding (bedding slopes) and slopes that cross-cut geological bedding (counter-bedding slopes). The test results show that the acceleration amplification coefficients increase with increasing elevation and, when the input earthquake amplitude is greater than 0.3 g, both bedding and counter-bedding slopes begin to show nonlinear dynamic response characteristics. With increasing elevation, the displacement of the bedding slope surface increases greatly. Conversely, the displacement of the counter-bedding slope surface increases first and then decreases; the slope develops a bulge at the relative elevation of 0.85. The displacement of the bedding slope surface is greater than that of the counter-bedding slope. The counter-bedding slope is more seismically stable compared with the bedding slope. Based on the Hilbert–Huang transform and marginal spectrum theories, the processes that develop dynamic damage of the bedding and counter-bedding slopes are identified. It is shown that the dynamic failure mode of the bedding slope is mainly represented by vertical tensile cracks at the rear of the slope, bedding slide of the strata along the weak intercalation, and rock collapse from the slope crest. However, the dynamic failure mode of the counter-bedding slope is mainly represented by staggered horizontal and vertical fissures, extrusion of the weak intercalation, and breakage at the slope crest.
doi_str_mv 10.1007/s00603-016-0971-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835674749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835674749</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-c25742e34c0aecbd6ec664ff81934adc6e3ee948549c697fcc3623efe947a3b3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wFvAi5fVZJNNdo9SrRYqQlvRW5hmZ-u2201Ntof-e1OqIIKnGd587zE8Qi45u-GM6dvAmGIiYVwlrNA80Uekx6WQiczE-zHpMZ2KJFUiPSVnISwZi0ed9wjc71pY15ZOMGxcG5BCW9IfcQh1s_VIn12J1FUU6BvCio7aDr2FBjos6cTZFZ02boP0NdTtIkLTD1jttxnMGzwnJxU0AS--Z5_Mhg-zwVMyfnkcDe7GCUiRd4lNMy1TFNIyQDsvFVqlZFXlvBASSqtQIBYyz2RhVaEra4VKBVZR0yDmok-uD7Eb7z63GDqzroPFpoEW3TYYnotMaallEdGrP-jSbX0bn4sU5yxLM6YjxQ-U9S4Ej5XZ-HoNfmc4M_vOzaFzEzs3-87N3pMePCGy7QL9r-R_TV-cOoMb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1811052507</pqid></control><display><type>article</type><title>Dynamic Response and Dynamic Failure Mode of a Weak Intercalated Rock Slope Using a Shaking Table</title><source>SpringerNature Journals</source><creator>Fan, Gang ; Zhang, Jianjing ; Wu, Jinbiao ; Yan, Kongming</creator><creatorcontrib>Fan, Gang ; Zhang, Jianjing ; Wu, Jinbiao ; Yan, Kongming</creatorcontrib><description>A large-scale shaking table test was performed to study the dynamic response of slopes parallel to geological bedding (bedding slopes) and slopes that cross-cut geological bedding (counter-bedding slopes). The test results show that the acceleration amplification coefficients increase with increasing elevation and, when the input earthquake amplitude is greater than 0.3 g, both bedding and counter-bedding slopes begin to show nonlinear dynamic response characteristics. With increasing elevation, the displacement of the bedding slope surface increases greatly. Conversely, the displacement of the counter-bedding slope surface increases first and then decreases; the slope develops a bulge at the relative elevation of 0.85. The displacement of the bedding slope surface is greater than that of the counter-bedding slope. The counter-bedding slope is more seismically stable compared with the bedding slope. Based on the Hilbert–Huang transform and marginal spectrum theories, the processes that develop dynamic damage of the bedding and counter-bedding slopes are identified. It is shown that the dynamic failure mode of the bedding slope is mainly represented by vertical tensile cracks at the rear of the slope, bedding slide of the strata along the weak intercalation, and rock collapse from the slope crest. However, the dynamic failure mode of the counter-bedding slope is mainly represented by staggered horizontal and vertical fissures, extrusion of the weak intercalation, and breakage at the slope crest.</description><identifier>ISSN: 0723-2632</identifier><identifier>EISSN: 1434-453X</identifier><identifier>DOI: 10.1007/s00603-016-0971-7</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Civil Engineering ; Displacement ; Dynamic response ; Dynamical systems ; Dynamics ; Earth and Environmental Science ; Earth Sciences ; Earthquakes ; Elevation ; Failure analysis ; Failure modes ; Geophysics/Geodesy ; Intercalation ; Original Paper ; Rock ; Rocks ; Seismic activity ; Slope stability ; Slopes</subject><ispartof>Rock mechanics and rock engineering, 2016-08, Vol.49 (8), p.3243-3256</ispartof><rights>Springer-Verlag Wien 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-c25742e34c0aecbd6ec664ff81934adc6e3ee948549c697fcc3623efe947a3b3</citedby><cites>FETCH-LOGICAL-a438t-c25742e34c0aecbd6ec664ff81934adc6e3ee948549c697fcc3623efe947a3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00603-016-0971-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00603-016-0971-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Fan, Gang</creatorcontrib><creatorcontrib>Zhang, Jianjing</creatorcontrib><creatorcontrib>Wu, Jinbiao</creatorcontrib><creatorcontrib>Yan, Kongming</creatorcontrib><title>Dynamic Response and Dynamic Failure Mode of a Weak Intercalated Rock Slope Using a Shaking Table</title><title>Rock mechanics and rock engineering</title><addtitle>Rock Mech Rock Eng</addtitle><description>A large-scale shaking table test was performed to study the dynamic response of slopes parallel to geological bedding (bedding slopes) and slopes that cross-cut geological bedding (counter-bedding slopes). The test results show that the acceleration amplification coefficients increase with increasing elevation and, when the input earthquake amplitude is greater than 0.3 g, both bedding and counter-bedding slopes begin to show nonlinear dynamic response characteristics. With increasing elevation, the displacement of the bedding slope surface increases greatly. Conversely, the displacement of the counter-bedding slope surface increases first and then decreases; the slope develops a bulge at the relative elevation of 0.85. The displacement of the bedding slope surface is greater than that of the counter-bedding slope. The counter-bedding slope is more seismically stable compared with the bedding slope. Based on the Hilbert–Huang transform and marginal spectrum theories, the processes that develop dynamic damage of the bedding and counter-bedding slopes are identified. It is shown that the dynamic failure mode of the bedding slope is mainly represented by vertical tensile cracks at the rear of the slope, bedding slide of the strata along the weak intercalation, and rock collapse from the slope crest. However, the dynamic failure mode of the counter-bedding slope is mainly represented by staggered horizontal and vertical fissures, extrusion of the weak intercalation, and breakage at the slope crest.</description><subject>Civil Engineering</subject><subject>Displacement</subject><subject>Dynamic response</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earthquakes</subject><subject>Elevation</subject><subject>Failure analysis</subject><subject>Failure modes</subject><subject>Geophysics/Geodesy</subject><subject>Intercalation</subject><subject>Original Paper</subject><subject>Rock</subject><subject>Rocks</subject><subject>Seismic activity</subject><subject>Slope stability</subject><subject>Slopes</subject><issn>0723-2632</issn><issn>1434-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLAzEQhYMoWKs_wFvAi5fVZJNNdo9SrRYqQlvRW5hmZ-u2201Ntof-e1OqIIKnGd587zE8Qi45u-GM6dvAmGIiYVwlrNA80Uekx6WQiczE-zHpMZ2KJFUiPSVnISwZi0ed9wjc71pY15ZOMGxcG5BCW9IfcQh1s_VIn12J1FUU6BvCio7aDr2FBjos6cTZFZ02boP0NdTtIkLTD1jttxnMGzwnJxU0AS--Z5_Mhg-zwVMyfnkcDe7GCUiRd4lNMy1TFNIyQDsvFVqlZFXlvBASSqtQIBYyz2RhVaEra4VKBVZR0yDmok-uD7Eb7z63GDqzroPFpoEW3TYYnotMaallEdGrP-jSbX0bn4sU5yxLM6YjxQ-U9S4Ej5XZ-HoNfmc4M_vOzaFzEzs3-87N3pMePCGy7QL9r-R_TV-cOoMb</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Fan, Gang</creator><creator>Zhang, Jianjing</creator><creator>Wu, Jinbiao</creator><creator>Yan, Kongming</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7SM</scope></search><sort><creationdate>20160801</creationdate><title>Dynamic Response and Dynamic Failure Mode of a Weak Intercalated Rock Slope Using a Shaking Table</title><author>Fan, Gang ; Zhang, Jianjing ; Wu, Jinbiao ; Yan, Kongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-c25742e34c0aecbd6ec664ff81934adc6e3ee948549c697fcc3623efe947a3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Civil Engineering</topic><topic>Displacement</topic><topic>Dynamic response</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earthquakes</topic><topic>Elevation</topic><topic>Failure analysis</topic><topic>Failure modes</topic><topic>Geophysics/Geodesy</topic><topic>Intercalation</topic><topic>Original Paper</topic><topic>Rock</topic><topic>Rocks</topic><topic>Seismic activity</topic><topic>Slope stability</topic><topic>Slopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Gang</creatorcontrib><creatorcontrib>Zhang, Jianjing</creatorcontrib><creatorcontrib>Wu, Jinbiao</creatorcontrib><creatorcontrib>Yan, Kongming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>Rock mechanics and rock engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Gang</au><au>Zhang, Jianjing</au><au>Wu, Jinbiao</au><au>Yan, Kongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Response and Dynamic Failure Mode of a Weak Intercalated Rock Slope Using a Shaking Table</atitle><jtitle>Rock mechanics and rock engineering</jtitle><stitle>Rock Mech Rock Eng</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>49</volume><issue>8</issue><spage>3243</spage><epage>3256</epage><pages>3243-3256</pages><issn>0723-2632</issn><eissn>1434-453X</eissn><abstract>A large-scale shaking table test was performed to study the dynamic response of slopes parallel to geological bedding (bedding slopes) and slopes that cross-cut geological bedding (counter-bedding slopes). The test results show that the acceleration amplification coefficients increase with increasing elevation and, when the input earthquake amplitude is greater than 0.3 g, both bedding and counter-bedding slopes begin to show nonlinear dynamic response characteristics. With increasing elevation, the displacement of the bedding slope surface increases greatly. Conversely, the displacement of the counter-bedding slope surface increases first and then decreases; the slope develops a bulge at the relative elevation of 0.85. The displacement of the bedding slope surface is greater than that of the counter-bedding slope. The counter-bedding slope is more seismically stable compared with the bedding slope. Based on the Hilbert–Huang transform and marginal spectrum theories, the processes that develop dynamic damage of the bedding and counter-bedding slopes are identified. It is shown that the dynamic failure mode of the bedding slope is mainly represented by vertical tensile cracks at the rear of the slope, bedding slide of the strata along the weak intercalation, and rock collapse from the slope crest. However, the dynamic failure mode of the counter-bedding slope is mainly represented by staggered horizontal and vertical fissures, extrusion of the weak intercalation, and breakage at the slope crest.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00603-016-0971-7</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0723-2632
ispartof Rock mechanics and rock engineering, 2016-08, Vol.49 (8), p.3243-3256
issn 0723-2632
1434-453X
language eng
recordid cdi_proquest_miscellaneous_1835674749
source SpringerNature Journals
subjects Civil Engineering
Displacement
Dynamic response
Dynamical systems
Dynamics
Earth and Environmental Science
Earth Sciences
Earthquakes
Elevation
Failure analysis
Failure modes
Geophysics/Geodesy
Intercalation
Original Paper
Rock
Rocks
Seismic activity
Slope stability
Slopes
title Dynamic Response and Dynamic Failure Mode of a Weak Intercalated Rock Slope Using a Shaking Table
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T16%3A19%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Response%20and%20Dynamic%20Failure%20Mode%20of%20a%20Weak%20Intercalated%20Rock%20Slope%20Using%20a%20Shaking%20Table&rft.jtitle=Rock%20mechanics%20and%20rock%20engineering&rft.au=Fan,%20Gang&rft.date=2016-08-01&rft.volume=49&rft.issue=8&rft.spage=3243&rft.epage=3256&rft.pages=3243-3256&rft.issn=0723-2632&rft.eissn=1434-453X&rft_id=info:doi/10.1007/s00603-016-0971-7&rft_dat=%3Cproquest_cross%3E1835674749%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1811052507&rft_id=info:pmid/&rfr_iscdi=true