Particle-hole symmetry numbers for nuclei

Two new numbers, ν and ζ , inspired by particle-hole symmetry are introduced. These numbers have extreme values at a closed shell and vanish mid-shell. A combination of even powers of these numbers has been used to model experimentally measured quantities such as R 4 / 2 = E ( 4 1 + ) / E ( 2 1 + )...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indian journal of physics 2016-09, Vol.90 (9), p.1069-1076
1. Verfasser: Bentley, Ian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1076
container_issue 9
container_start_page 1069
container_title Indian journal of physics
container_volume 90
creator Bentley, Ian
description Two new numbers, ν and ζ , inspired by particle-hole symmetry are introduced. These numbers have extreme values at a closed shell and vanish mid-shell. A combination of even powers of these numbers has been used to model experimentally measured quantities such as R 4 / 2 = E ( 4 1 + ) / E ( 2 1 + ) and the “microscopic” contribution to binding energies. A binding energy fit consisting of a total of six fit coefficients, including one new shell term, reproduces the experimental binding energies of 2353 nuclei with an r.m.s. standard deviation of 1.55 MeV. The difference between the experimental and fit values of observables, specifically the R 4 / 2 , provides an indication of where shell closure features are less pronounced and where sub-shells closures occur.
doi_str_mv 10.1007/s12648-016-0843-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835674744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835674744</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-4a384e2405a53a043d17317497a1d6fc49e646b2b454b3a981c28616bcf449013</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvBix6imWQ2H0cpfkFBD3oO2TSrW_ajJruH_ntT14MInuaFed5heAg5B3YNjKmbBFyipgwkZRoF1QdkxoxCajQWh99ZUMBCH5OTlDaMSQOqmJGrFxeH2jeBfvRNWKRd24Yh7hbd2JYhpkXVx5zzvj4lR5VrUjj7mXPydn_3unykq-eHp-XtinrBYKDohMbAkRWuEI6hWIMSoNAoB2tZeTRBoix5iQWWwhkNnmsJsvQVomEg5uRyuruN_ecY0mDbOvnQNK4L_ZgsaFFIhQoxoxd_0E0_xi5_lyngXGmDPFMwUT72KcVQ2W2sWxd3Fpjdy7OTPJvl2b08q3OHT52U2e49xF-X_y19ASTebso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1812278942</pqid></control><display><type>article</type><title>Particle-hole symmetry numbers for nuclei</title><source>SpringerLink Journals</source><creator>Bentley, Ian</creator><creatorcontrib>Bentley, Ian</creatorcontrib><description>Two new numbers, ν and ζ , inspired by particle-hole symmetry are introduced. These numbers have extreme values at a closed shell and vanish mid-shell. A combination of even powers of these numbers has been used to model experimentally measured quantities such as R 4 / 2 = E ( 4 1 + ) / E ( 2 1 + ) and the “microscopic” contribution to binding energies. A binding energy fit consisting of a total of six fit coefficients, including one new shell term, reproduces the experimental binding energies of 2353 nuclei with an r.m.s. standard deviation of 1.55 MeV. The difference between the experimental and fit values of observables, specifically the R 4 / 2 , provides an indication of where shell closure features are less pronounced and where sub-shells closures occur.</description><identifier>ISSN: 0973-1458</identifier><identifier>EISSN: 0974-9845</identifier><identifier>DOI: 10.1007/s12648-016-0843-8</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Astrophysics and Astroparticles ; Binding energy ; Closures ; Extreme values ; Mathematical models ; Nuclei ; Numbers ; Original Paper ; Particle size ; Physics ; Physics and Astronomy ; Standard deviation ; Symmetry ; Texts</subject><ispartof>Indian journal of physics, 2016-09, Vol.90 (9), p.1069-1076</ispartof><rights>Indian Association for the Cultivation of Science 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-4a384e2405a53a043d17317497a1d6fc49e646b2b454b3a981c28616bcf449013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12648-016-0843-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12648-016-0843-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Bentley, Ian</creatorcontrib><title>Particle-hole symmetry numbers for nuclei</title><title>Indian journal of physics</title><addtitle>Indian J Phys</addtitle><description>Two new numbers, ν and ζ , inspired by particle-hole symmetry are introduced. These numbers have extreme values at a closed shell and vanish mid-shell. A combination of even powers of these numbers has been used to model experimentally measured quantities such as R 4 / 2 = E ( 4 1 + ) / E ( 2 1 + ) and the “microscopic” contribution to binding energies. A binding energy fit consisting of a total of six fit coefficients, including one new shell term, reproduces the experimental binding energies of 2353 nuclei with an r.m.s. standard deviation of 1.55 MeV. The difference between the experimental and fit values of observables, specifically the R 4 / 2 , provides an indication of where shell closure features are less pronounced and where sub-shells closures occur.</description><subject>Astrophysics and Astroparticles</subject><subject>Binding energy</subject><subject>Closures</subject><subject>Extreme values</subject><subject>Mathematical models</subject><subject>Nuclei</subject><subject>Numbers</subject><subject>Original Paper</subject><subject>Particle size</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Standard deviation</subject><subject>Symmetry</subject><subject>Texts</subject><issn>0973-1458</issn><issn>0974-9845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wFvBix6imWQ2H0cpfkFBD3oO2TSrW_ajJruH_ntT14MInuaFed5heAg5B3YNjKmbBFyipgwkZRoF1QdkxoxCajQWh99ZUMBCH5OTlDaMSQOqmJGrFxeH2jeBfvRNWKRd24Yh7hbd2JYhpkXVx5zzvj4lR5VrUjj7mXPydn_3unykq-eHp-XtinrBYKDohMbAkRWuEI6hWIMSoNAoB2tZeTRBoix5iQWWwhkNnmsJsvQVomEg5uRyuruN_ecY0mDbOvnQNK4L_ZgsaFFIhQoxoxd_0E0_xi5_lyngXGmDPFMwUT72KcVQ2W2sWxd3Fpjdy7OTPJvl2b08q3OHT52U2e49xF-X_y19ASTebso</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Bentley, Ian</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04W</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20160901</creationdate><title>Particle-hole symmetry numbers for nuclei</title><author>Bentley, Ian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-4a384e2405a53a043d17317497a1d6fc49e646b2b454b3a981c28616bcf449013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Astrophysics and Astroparticles</topic><topic>Binding energy</topic><topic>Closures</topic><topic>Extreme values</topic><topic>Mathematical models</topic><topic>Nuclei</topic><topic>Numbers</topic><topic>Original Paper</topic><topic>Particle size</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Standard deviation</topic><topic>Symmetry</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bentley, Ian</creatorcontrib><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Science &amp; Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Indian journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bentley, Ian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle-hole symmetry numbers for nuclei</atitle><jtitle>Indian journal of physics</jtitle><stitle>Indian J Phys</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>90</volume><issue>9</issue><spage>1069</spage><epage>1076</epage><pages>1069-1076</pages><issn>0973-1458</issn><eissn>0974-9845</eissn><abstract>Two new numbers, ν and ζ , inspired by particle-hole symmetry are introduced. These numbers have extreme values at a closed shell and vanish mid-shell. A combination of even powers of these numbers has been used to model experimentally measured quantities such as R 4 / 2 = E ( 4 1 + ) / E ( 2 1 + ) and the “microscopic” contribution to binding energies. A binding energy fit consisting of a total of six fit coefficients, including one new shell term, reproduces the experimental binding energies of 2353 nuclei with an r.m.s. standard deviation of 1.55 MeV. The difference between the experimental and fit values of observables, specifically the R 4 / 2 , provides an indication of where shell closure features are less pronounced and where sub-shells closures occur.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12648-016-0843-8</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0973-1458
ispartof Indian journal of physics, 2016-09, Vol.90 (9), p.1069-1076
issn 0973-1458
0974-9845
language eng
recordid cdi_proquest_miscellaneous_1835674744
source SpringerLink Journals
subjects Astrophysics and Astroparticles
Binding energy
Closures
Extreme values
Mathematical models
Nuclei
Numbers
Original Paper
Particle size
Physics
Physics and Astronomy
Standard deviation
Symmetry
Texts
title Particle-hole symmetry numbers for nuclei
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle-hole%20symmetry%20numbers%20for%20nuclei&rft.jtitle=Indian%20journal%20of%20physics&rft.au=Bentley,%20Ian&rft.date=2016-09-01&rft.volume=90&rft.issue=9&rft.spage=1069&rft.epage=1076&rft.pages=1069-1076&rft.issn=0973-1458&rft.eissn=0974-9845&rft_id=info:doi/10.1007/s12648-016-0843-8&rft_dat=%3Cproquest_cross%3E1835674744%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1812278942&rft_id=info:pmid/&rfr_iscdi=true