Stochastic modelling and prediction of fatigue crack propagation using piecewise-deterministic Markov processes

Fatigue crack propagation is a stochastic phenomenon due to the inherent uncertainties originating from material properties, environmental conditions and cyclic mechanical loads. Stochastic processes thus offer an appropriate framework for modelling and predicting crack propagation. In this paper, f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability Journal of risk and reliability, 2016-08, Vol.230 (4), p.405-416
Hauptverfasser: Ben Abdessalem, Anis, Azaïs, Romain, Touzet-Cortina, Marie, Gégout-Petit, Anne, Puiggali, Monique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 416
container_issue 4
container_start_page 405
container_title Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability
container_volume 230
creator Ben Abdessalem, Anis
Azaïs, Romain
Touzet-Cortina, Marie
Gégout-Petit, Anne
Puiggali, Monique
description Fatigue crack propagation is a stochastic phenomenon due to the inherent uncertainties originating from material properties, environmental conditions and cyclic mechanical loads. Stochastic processes thus offer an appropriate framework for modelling and predicting crack propagation. In this paper, fatigue crack growth is modelled and predicted by a piecewise-deterministic Markov process associated with deterministic crack laws. First, a regime-switching model is used to express the transition between the Paris regime and rapid propagation that occurs before failure. Both regimes of propagation are governed by a deterministic equation whose parameters are randomly selected in a finite state space. This one has been adjusted from real data available in the literature. The crack growth behaviour is well-captured and the transition between both regimes is well-estimated by a critical stress intensity factor range. The second purpose of our investigation deals with the prediction of the fatigue crack path and its variability based on measurements taken at the beginning of the propagation. The results show that our method based on this class of stochastic models associated with an updating method provides a reliable prediction and can be an efficient tool for safety analysis of structures in a large variety of engineering applications. In addition, the proposed strategy requires only little information to be effective and is not time-consuming.
doi_str_mv 10.1177/1748006X16651170
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835670181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1748006X16651170</sage_id><sourcerecordid>1811883566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-1d89372070aada3165a3a81322bbdb117c3a6b302606e40ca9035c2551acd4de3</originalsourceid><addsrcrecordid>eNqFkc1LAzEQxRdRsFbvHhe8eFmdJJtke5TiF1Q8qOBtmSbTGm03NdlV_O_NWhER1NMMM7_3hsdk2T6DI8a0Pma6rADUPVNKpgFsZIN-VADoavOrV_fb2U6MjwClZgoGmb9pvXnA2DqTL72lxcI18xwbm68CWWda55vcz_IZtm7eUW4Cmqe08yuc48eyi71i5cjQq4tUWGopLF3jPjyvMDz5l15gKEaKu9nWDBeR9j7rMLs7O70dXxST6_PL8cmkMGUp24LZaiQ0Bw2IFgVTEgVWTHA-ndppymcEqqkArkBRCQZHIKThUjI0trQkhtnh2jddfu4otvXSRZPiYUO-izWrhFQaWPL8H2Ws6nGV0IMf6KPvQpOC1LzkQoLko9FfFKugUiA1F4mCNWWCjzHQrF4Ft8TwVjOo-5fWP1-aJMVaEnFO30x_498BOy-gjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808605723</pqid></control><display><type>article</type><title>Stochastic modelling and prediction of fatigue crack propagation using piecewise-deterministic Markov processes</title><source>SAGE Complete A-Z List</source><creator>Ben Abdessalem, Anis ; Azaïs, Romain ; Touzet-Cortina, Marie ; Gégout-Petit, Anne ; Puiggali, Monique</creator><creatorcontrib>Ben Abdessalem, Anis ; Azaïs, Romain ; Touzet-Cortina, Marie ; Gégout-Petit, Anne ; Puiggali, Monique</creatorcontrib><description>Fatigue crack propagation is a stochastic phenomenon due to the inherent uncertainties originating from material properties, environmental conditions and cyclic mechanical loads. Stochastic processes thus offer an appropriate framework for modelling and predicting crack propagation. In this paper, fatigue crack growth is modelled and predicted by a piecewise-deterministic Markov process associated with deterministic crack laws. First, a regime-switching model is used to express the transition between the Paris regime and rapid propagation that occurs before failure. Both regimes of propagation are governed by a deterministic equation whose parameters are randomly selected in a finite state space. This one has been adjusted from real data available in the literature. The crack growth behaviour is well-captured and the transition between both regimes is well-estimated by a critical stress intensity factor range. The second purpose of our investigation deals with the prediction of the fatigue crack path and its variability based on measurements taken at the beginning of the propagation. The results show that our method based on this class of stochastic models associated with an updating method provides a reliable prediction and can be an efficient tool for safety analysis of structures in a large variety of engineering applications. In addition, the proposed strategy requires only little information to be effective and is not time-consuming.</description><identifier>ISSN: 1748-006X</identifier><identifier>EISSN: 1748-0078</identifier><identifier>DOI: 10.1177/1748006X16651170</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Crack propagation ; Cyclic loads ; Environmental conditions ; Fatigue ; Fatigue failure ; Fracture mechanics ; Markov analysis ; Markov processes ; Material properties ; Mathematical analysis ; Mathematical models ; Modelling ; Propagation ; Stochastic models ; Stochastic processes ; Stochasticity ; Stress intensity factors</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability, 2016-08, Vol.230 (4), p.405-416</ispartof><rights>IMechE 2016</rights><rights>Copyright SAGE PUBLICATIONS, INC. Aug 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-1d89372070aada3165a3a81322bbdb117c3a6b302606e40ca9035c2551acd4de3</citedby><cites>FETCH-LOGICAL-c445t-1d89372070aada3165a3a81322bbdb117c3a6b302606e40ca9035c2551acd4de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1748006X16651170$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1748006X16651170$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Ben Abdessalem, Anis</creatorcontrib><creatorcontrib>Azaïs, Romain</creatorcontrib><creatorcontrib>Touzet-Cortina, Marie</creatorcontrib><creatorcontrib>Gégout-Petit, Anne</creatorcontrib><creatorcontrib>Puiggali, Monique</creatorcontrib><title>Stochastic modelling and prediction of fatigue crack propagation using piecewise-deterministic Markov processes</title><title>Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability</title><description>Fatigue crack propagation is a stochastic phenomenon due to the inherent uncertainties originating from material properties, environmental conditions and cyclic mechanical loads. Stochastic processes thus offer an appropriate framework for modelling and predicting crack propagation. In this paper, fatigue crack growth is modelled and predicted by a piecewise-deterministic Markov process associated with deterministic crack laws. First, a regime-switching model is used to express the transition between the Paris regime and rapid propagation that occurs before failure. Both regimes of propagation are governed by a deterministic equation whose parameters are randomly selected in a finite state space. This one has been adjusted from real data available in the literature. The crack growth behaviour is well-captured and the transition between both regimes is well-estimated by a critical stress intensity factor range. The second purpose of our investigation deals with the prediction of the fatigue crack path and its variability based on measurements taken at the beginning of the propagation. The results show that our method based on this class of stochastic models associated with an updating method provides a reliable prediction and can be an efficient tool for safety analysis of structures in a large variety of engineering applications. In addition, the proposed strategy requires only little information to be effective and is not time-consuming.</description><subject>Crack propagation</subject><subject>Cyclic loads</subject><subject>Environmental conditions</subject><subject>Fatigue</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Material properties</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Propagation</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Stochasticity</subject><subject>Stress intensity factors</subject><issn>1748-006X</issn><issn>1748-0078</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkc1LAzEQxRdRsFbvHhe8eFmdJJtke5TiF1Q8qOBtmSbTGm03NdlV_O_NWhER1NMMM7_3hsdk2T6DI8a0Pma6rADUPVNKpgFsZIN-VADoavOrV_fb2U6MjwClZgoGmb9pvXnA2DqTL72lxcI18xwbm68CWWda55vcz_IZtm7eUW4Cmqe08yuc48eyi71i5cjQq4tUWGopLF3jPjyvMDz5l15gKEaKu9nWDBeR9j7rMLs7O70dXxST6_PL8cmkMGUp24LZaiQ0Bw2IFgVTEgVWTHA-ndppymcEqqkArkBRCQZHIKThUjI0trQkhtnh2jddfu4otvXSRZPiYUO-izWrhFQaWPL8H2Ws6nGV0IMf6KPvQpOC1LzkQoLko9FfFKugUiA1F4mCNWWCjzHQrF4Ft8TwVjOo-5fWP1-aJMVaEnFO30x_498BOy-gjQ</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Ben Abdessalem, Anis</creator><creator>Azaïs, Romain</creator><creator>Touzet-Cortina, Marie</creator><creator>Gégout-Petit, Anne</creator><creator>Puiggali, Monique</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>201608</creationdate><title>Stochastic modelling and prediction of fatigue crack propagation using piecewise-deterministic Markov processes</title><author>Ben Abdessalem, Anis ; Azaïs, Romain ; Touzet-Cortina, Marie ; Gégout-Petit, Anne ; Puiggali, Monique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-1d89372070aada3165a3a81322bbdb117c3a6b302606e40ca9035c2551acd4de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Crack propagation</topic><topic>Cyclic loads</topic><topic>Environmental conditions</topic><topic>Fatigue</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Material properties</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Propagation</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Stochasticity</topic><topic>Stress intensity factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben Abdessalem, Anis</creatorcontrib><creatorcontrib>Azaïs, Romain</creatorcontrib><creatorcontrib>Touzet-Cortina, Marie</creatorcontrib><creatorcontrib>Gégout-Petit, Anne</creatorcontrib><creatorcontrib>Puiggali, Monique</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben Abdessalem, Anis</au><au>Azaïs, Romain</au><au>Touzet-Cortina, Marie</au><au>Gégout-Petit, Anne</au><au>Puiggali, Monique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic modelling and prediction of fatigue crack propagation using piecewise-deterministic Markov processes</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability</jtitle><date>2016-08</date><risdate>2016</risdate><volume>230</volume><issue>4</issue><spage>405</spage><epage>416</epage><pages>405-416</pages><issn>1748-006X</issn><eissn>1748-0078</eissn><abstract>Fatigue crack propagation is a stochastic phenomenon due to the inherent uncertainties originating from material properties, environmental conditions and cyclic mechanical loads. Stochastic processes thus offer an appropriate framework for modelling and predicting crack propagation. In this paper, fatigue crack growth is modelled and predicted by a piecewise-deterministic Markov process associated with deterministic crack laws. First, a regime-switching model is used to express the transition between the Paris regime and rapid propagation that occurs before failure. Both regimes of propagation are governed by a deterministic equation whose parameters are randomly selected in a finite state space. This one has been adjusted from real data available in the literature. The crack growth behaviour is well-captured and the transition between both regimes is well-estimated by a critical stress intensity factor range. The second purpose of our investigation deals with the prediction of the fatigue crack path and its variability based on measurements taken at the beginning of the propagation. The results show that our method based on this class of stochastic models associated with an updating method provides a reliable prediction and can be an efficient tool for safety analysis of structures in a large variety of engineering applications. In addition, the proposed strategy requires only little information to be effective and is not time-consuming.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1748006X16651170</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-006X
ispartof Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability, 2016-08, Vol.230 (4), p.405-416
issn 1748-006X
1748-0078
language eng
recordid cdi_proquest_miscellaneous_1835670181
source SAGE Complete A-Z List
subjects Crack propagation
Cyclic loads
Environmental conditions
Fatigue
Fatigue failure
Fracture mechanics
Markov analysis
Markov processes
Material properties
Mathematical analysis
Mathematical models
Modelling
Propagation
Stochastic models
Stochastic processes
Stochasticity
Stress intensity factors
title Stochastic modelling and prediction of fatigue crack propagation using piecewise-deterministic Markov processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A22%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20modelling%20and%20prediction%20of%20fatigue%20crack%20propagation%20using%20piecewise-deterministic%20Markov%20processes&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20O,%20Journal%20of%20risk%20and%20reliability&rft.au=Ben%20Abdessalem,%20Anis&rft.date=2016-08&rft.volume=230&rft.issue=4&rft.spage=405&rft.epage=416&rft.pages=405-416&rft.issn=1748-006X&rft.eissn=1748-0078&rft_id=info:doi/10.1177/1748006X16651170&rft_dat=%3Cproquest_cross%3E1811883566%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808605723&rft_id=info:pmid/&rft_sage_id=10.1177_1748006X16651170&rfr_iscdi=true