Structural Design of Polymer-Derived SiOC Ceramic Aerogels for High-Rate Li Ion Storage Applications
SiOC ceramic aerogels with different porosity, pore size, and specific surface area have been synthesized through the polymer‐derived ceramic route by modifying the synthesis parameters and the pyrolysis steps. Preceramic aerogels are prepared by cross‐linking a linear polysiloxane with divinylbenze...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2016-09, Vol.99 (9), p.2977-2983 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2983 |
---|---|
container_issue | 9 |
container_start_page | 2977 |
container_title | Journal of the American Ceramic Society |
container_volume | 99 |
creator | Vallachira Warriam Sasikumar, Pradeep Zera, Emanuele Graczyk-Zajac, Magdalena Riedel, Ralf Soraru, Gian Domenico |
description | SiOC ceramic aerogels with different porosity, pore size, and specific surface area have been synthesized through the polymer‐derived ceramic route by modifying the synthesis parameters and the pyrolysis steps. Preceramic aerogels are prepared by cross‐linking a linear polysiloxane with divinylbenzene (DVB) via hydrosilylation reaction in the presence of a Pt catalyst under highly diluted conditions. Acetone and cyclohexane are used as solvent in our study. Wet gels are subsequently supercritically dried with CO2 to get the final preceramic aerogels. The SiOC ceramic aerogels are obtained after a pyrolysis treatment at 900°C in two different atmospheres: pure Ar and H2 (3%)/Ar mixtures. The nature of the solvent has a profound influence of the aerogel microstructure in terms of porosity, pore size, and specific surface area. Synthesized SiOC ceramic aerogels have similar chemical compositions irrespective of processing conditions with ~40 wt% of free carbon distributed within remaining mixed SiOC matrix. The BET surface areas range from 215 m2/g for acetone samples to 80 m2/g for samples derived from cyclohexane solvent. The electrochemical characterization reveals a high specific reversible capacity of more than 900 mAh/g at a charging rate of C (360 mA/g) along with a good cycling stability. Samples pyrolyzed in H2/Ar atmosphere show a high reversible capacity of 200 mAh/g even at a high charging/discharging rate of 20 C. Initial capacities were recovered after whole cycling procedure indicating their structural stabilities resisting any kind of exfoliations. |
doi_str_mv | 10.1111/jace.14323 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835669485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4181665901</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3333-8a337057f8bf311ec128e9fbb74dd8c3f7566e5e0c9e97ec1d5b6c0599b582123</originalsourceid><addsrcrecordid>eNpdkM1u2zAQhIkiAeqkueQJCPTSi1JSNEXyaCix48JofpwgR4KiVipdWXRIqa3fvoxd9JC97C72m8FiELqk5Iqm-roxFq7olOXsA5pQzmmWK1qcoAkhJM-EzMlHdBbjJq1UyekE1eshjHYYg-nwNUTX9tg3-N53-y2E7BqC-wU1Xru7EpcQzNZZPIPgW-gibnzAt679kT2aAfDK4aXv8XrwwbSAZ7td56wZnO_jJ3TamC7Cxb9-jp7nN0_lbba6WyzL2SprWapMGsYE4aKRVcMoBUtzCaqpKjGta2lZI3hRAAdiFSiRzjWvCku4UhWXOc3ZOfpy9N0F_zpCHPTWRQtdZ3rwY9RUsuSgppIn9PM7dOPH0KfvEkVVLpkSKlH0SP12Hez1LritCXtNiX5LW7-lrQ9p62-z8uYwJU121Lg4wJ__GhN-6kIwwfXL94Wel-SeLB6UfmJ_AXZ7gn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819283979</pqid></control><display><type>article</type><title>Structural Design of Polymer-Derived SiOC Ceramic Aerogels for High-Rate Li Ion Storage Applications</title><source>Wiley Journals</source><creator>Vallachira Warriam Sasikumar, Pradeep ; Zera, Emanuele ; Graczyk-Zajac, Magdalena ; Riedel, Ralf ; Soraru, Gian Domenico</creator><contributor>Dunn, B.</contributor><creatorcontrib>Vallachira Warriam Sasikumar, Pradeep ; Zera, Emanuele ; Graczyk-Zajac, Magdalena ; Riedel, Ralf ; Soraru, Gian Domenico ; Dunn, B.</creatorcontrib><description>SiOC ceramic aerogels with different porosity, pore size, and specific surface area have been synthesized through the polymer‐derived ceramic route by modifying the synthesis parameters and the pyrolysis steps. Preceramic aerogels are prepared by cross‐linking a linear polysiloxane with divinylbenzene (DVB) via hydrosilylation reaction in the presence of a Pt catalyst under highly diluted conditions. Acetone and cyclohexane are used as solvent in our study. Wet gels are subsequently supercritically dried with CO2 to get the final preceramic aerogels. The SiOC ceramic aerogels are obtained after a pyrolysis treatment at 900°C in two different atmospheres: pure Ar and H2 (3%)/Ar mixtures. The nature of the solvent has a profound influence of the aerogel microstructure in terms of porosity, pore size, and specific surface area. Synthesized SiOC ceramic aerogels have similar chemical compositions irrespective of processing conditions with ~40 wt% of free carbon distributed within remaining mixed SiOC matrix. The BET surface areas range from 215 m2/g for acetone samples to 80 m2/g for samples derived from cyclohexane solvent. The electrochemical characterization reveals a high specific reversible capacity of more than 900 mAh/g at a charging rate of C (360 mA/g) along with a good cycling stability. Samples pyrolyzed in H2/Ar atmosphere show a high reversible capacity of 200 mAh/g even at a high charging/discharging rate of 20 C. Initial capacities were recovered after whole cycling procedure indicating their structural stabilities resisting any kind of exfoliations.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.14323</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Columbus: Blackwell Publishing Ltd</publisher><subject>aerogel/aerosol ; Aerogels ; Atmospheres ; Ceramics ; Chemical synthesis ; Cycles ; Cyclohexane ; electrochemistry ; polymer precursor ; Polymers ; Porosity ; porous materials ; Silicon dioxide ; silicon oxycarbide ; Solvents</subject><ispartof>Journal of the American Ceramic Society, 2016-09, Vol.99 (9), p.2977-2983</ispartof><rights>2016 The American Ceramic Society</rights><rights>2016 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.14323$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.14323$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><contributor>Dunn, B.</contributor><creatorcontrib>Vallachira Warriam Sasikumar, Pradeep</creatorcontrib><creatorcontrib>Zera, Emanuele</creatorcontrib><creatorcontrib>Graczyk-Zajac, Magdalena</creatorcontrib><creatorcontrib>Riedel, Ralf</creatorcontrib><creatorcontrib>Soraru, Gian Domenico</creatorcontrib><title>Structural Design of Polymer-Derived SiOC Ceramic Aerogels for High-Rate Li Ion Storage Applications</title><title>Journal of the American Ceramic Society</title><addtitle>J. Am. Ceram. Soc</addtitle><description>SiOC ceramic aerogels with different porosity, pore size, and specific surface area have been synthesized through the polymer‐derived ceramic route by modifying the synthesis parameters and the pyrolysis steps. Preceramic aerogels are prepared by cross‐linking a linear polysiloxane with divinylbenzene (DVB) via hydrosilylation reaction in the presence of a Pt catalyst under highly diluted conditions. Acetone and cyclohexane are used as solvent in our study. Wet gels are subsequently supercritically dried with CO2 to get the final preceramic aerogels. The SiOC ceramic aerogels are obtained after a pyrolysis treatment at 900°C in two different atmospheres: pure Ar and H2 (3%)/Ar mixtures. The nature of the solvent has a profound influence of the aerogel microstructure in terms of porosity, pore size, and specific surface area. Synthesized SiOC ceramic aerogels have similar chemical compositions irrespective of processing conditions with ~40 wt% of free carbon distributed within remaining mixed SiOC matrix. The BET surface areas range from 215 m2/g for acetone samples to 80 m2/g for samples derived from cyclohexane solvent. The electrochemical characterization reveals a high specific reversible capacity of more than 900 mAh/g at a charging rate of C (360 mA/g) along with a good cycling stability. Samples pyrolyzed in H2/Ar atmosphere show a high reversible capacity of 200 mAh/g even at a high charging/discharging rate of 20 C. Initial capacities were recovered after whole cycling procedure indicating their structural stabilities resisting any kind of exfoliations.</description><subject>aerogel/aerosol</subject><subject>Aerogels</subject><subject>Atmospheres</subject><subject>Ceramics</subject><subject>Chemical synthesis</subject><subject>Cycles</subject><subject>Cyclohexane</subject><subject>electrochemistry</subject><subject>polymer precursor</subject><subject>Polymers</subject><subject>Porosity</subject><subject>porous materials</subject><subject>Silicon dioxide</subject><subject>silicon oxycarbide</subject><subject>Solvents</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkM1u2zAQhIkiAeqkueQJCPTSi1JSNEXyaCix48JofpwgR4KiVipdWXRIqa3fvoxd9JC97C72m8FiELqk5Iqm-roxFq7olOXsA5pQzmmWK1qcoAkhJM-EzMlHdBbjJq1UyekE1eshjHYYg-nwNUTX9tg3-N53-y2E7BqC-wU1Xru7EpcQzNZZPIPgW-gibnzAt679kT2aAfDK4aXv8XrwwbSAZ7td56wZnO_jJ3TamC7Cxb9-jp7nN0_lbba6WyzL2SprWapMGsYE4aKRVcMoBUtzCaqpKjGta2lZI3hRAAdiFSiRzjWvCku4UhWXOc3ZOfpy9N0F_zpCHPTWRQtdZ3rwY9RUsuSgppIn9PM7dOPH0KfvEkVVLpkSKlH0SP12Hez1LritCXtNiX5LW7-lrQ9p62-z8uYwJU121Lg4wJ__GhN-6kIwwfXL94Wel-SeLB6UfmJ_AXZ7gn0</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Vallachira Warriam Sasikumar, Pradeep</creator><creator>Zera, Emanuele</creator><creator>Graczyk-Zajac, Magdalena</creator><creator>Riedel, Ralf</creator><creator>Soraru, Gian Domenico</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201609</creationdate><title>Structural Design of Polymer-Derived SiOC Ceramic Aerogels for High-Rate Li Ion Storage Applications</title><author>Vallachira Warriam Sasikumar, Pradeep ; Zera, Emanuele ; Graczyk-Zajac, Magdalena ; Riedel, Ralf ; Soraru, Gian Domenico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3333-8a337057f8bf311ec128e9fbb74dd8c3f7566e5e0c9e97ec1d5b6c0599b582123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>aerogel/aerosol</topic><topic>Aerogels</topic><topic>Atmospheres</topic><topic>Ceramics</topic><topic>Chemical synthesis</topic><topic>Cycles</topic><topic>Cyclohexane</topic><topic>electrochemistry</topic><topic>polymer precursor</topic><topic>Polymers</topic><topic>Porosity</topic><topic>porous materials</topic><topic>Silicon dioxide</topic><topic>silicon oxycarbide</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vallachira Warriam Sasikumar, Pradeep</creatorcontrib><creatorcontrib>Zera, Emanuele</creatorcontrib><creatorcontrib>Graczyk-Zajac, Magdalena</creatorcontrib><creatorcontrib>Riedel, Ralf</creatorcontrib><creatorcontrib>Soraru, Gian Domenico</creatorcontrib><collection>Istex</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vallachira Warriam Sasikumar, Pradeep</au><au>Zera, Emanuele</au><au>Graczyk-Zajac, Magdalena</au><au>Riedel, Ralf</au><au>Soraru, Gian Domenico</au><au>Dunn, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Design of Polymer-Derived SiOC Ceramic Aerogels for High-Rate Li Ion Storage Applications</atitle><jtitle>Journal of the American Ceramic Society</jtitle><addtitle>J. Am. Ceram. Soc</addtitle><date>2016-09</date><risdate>2016</risdate><volume>99</volume><issue>9</issue><spage>2977</spage><epage>2983</epage><pages>2977-2983</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>SiOC ceramic aerogels with different porosity, pore size, and specific surface area have been synthesized through the polymer‐derived ceramic route by modifying the synthesis parameters and the pyrolysis steps. Preceramic aerogels are prepared by cross‐linking a linear polysiloxane with divinylbenzene (DVB) via hydrosilylation reaction in the presence of a Pt catalyst under highly diluted conditions. Acetone and cyclohexane are used as solvent in our study. Wet gels are subsequently supercritically dried with CO2 to get the final preceramic aerogels. The SiOC ceramic aerogels are obtained after a pyrolysis treatment at 900°C in two different atmospheres: pure Ar and H2 (3%)/Ar mixtures. The nature of the solvent has a profound influence of the aerogel microstructure in terms of porosity, pore size, and specific surface area. Synthesized SiOC ceramic aerogels have similar chemical compositions irrespective of processing conditions with ~40 wt% of free carbon distributed within remaining mixed SiOC matrix. The BET surface areas range from 215 m2/g for acetone samples to 80 m2/g for samples derived from cyclohexane solvent. The electrochemical characterization reveals a high specific reversible capacity of more than 900 mAh/g at a charging rate of C (360 mA/g) along with a good cycling stability. Samples pyrolyzed in H2/Ar atmosphere show a high reversible capacity of 200 mAh/g even at a high charging/discharging rate of 20 C. Initial capacities were recovered after whole cycling procedure indicating their structural stabilities resisting any kind of exfoliations.</abstract><cop>Columbus</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jace.14323</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2016-09, Vol.99 (9), p.2977-2983 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835669485 |
source | Wiley Journals |
subjects | aerogel/aerosol Aerogels Atmospheres Ceramics Chemical synthesis Cycles Cyclohexane electrochemistry polymer precursor Polymers Porosity porous materials Silicon dioxide silicon oxycarbide Solvents |
title | Structural Design of Polymer-Derived SiOC Ceramic Aerogels for High-Rate Li Ion Storage Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Design%20of%20Polymer-Derived%20SiOC%20Ceramic%20Aerogels%20for%20High-Rate%20Li%20Ion%20Storage%20Applications&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Vallachira%20Warriam%20Sasikumar,%20Pradeep&rft.date=2016-09&rft.volume=99&rft.issue=9&rft.spage=2977&rft.epage=2983&rft.pages=2977-2983&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/jace.14323&rft_dat=%3Cproquest_wiley%3E4181665901%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1819283979&rft_id=info:pmid/&rfr_iscdi=true |