Structural Design of Polymer-Derived SiOC Ceramic Aerogels for High-Rate Li Ion Storage Applications

SiOC ceramic aerogels with different porosity, pore size, and specific surface area have been synthesized through the polymer‐derived ceramic route by modifying the synthesis parameters and the pyrolysis steps. Preceramic aerogels are prepared by cross‐linking a linear polysiloxane with divinylbenze...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2016-09, Vol.99 (9), p.2977-2983
Hauptverfasser: Vallachira Warriam Sasikumar, Pradeep, Zera, Emanuele, Graczyk-Zajac, Magdalena, Riedel, Ralf, Soraru, Gian Domenico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2983
container_issue 9
container_start_page 2977
container_title Journal of the American Ceramic Society
container_volume 99
creator Vallachira Warriam Sasikumar, Pradeep
Zera, Emanuele
Graczyk-Zajac, Magdalena
Riedel, Ralf
Soraru, Gian Domenico
description SiOC ceramic aerogels with different porosity, pore size, and specific surface area have been synthesized through the polymer‐derived ceramic route by modifying the synthesis parameters and the pyrolysis steps. Preceramic aerogels are prepared by cross‐linking a linear polysiloxane with divinylbenzene (DVB) via hydrosilylation reaction in the presence of a Pt catalyst under highly diluted conditions. Acetone and cyclohexane are used as solvent in our study. Wet gels are subsequently supercritically dried with CO2 to get the final preceramic aerogels. The SiOC ceramic aerogels are obtained after a pyrolysis treatment at 900°C in two different atmospheres: pure Ar and H2 (3%)/Ar mixtures. The nature of the solvent has a profound influence of the aerogel microstructure in terms of porosity, pore size, and specific surface area. Synthesized SiOC ceramic aerogels have similar chemical compositions irrespective of processing conditions with ~40 wt% of free carbon distributed within remaining mixed SiOC matrix. The BET surface areas range from 215 m2/g for acetone samples to 80 m2/g for samples derived from cyclohexane solvent. The electrochemical characterization reveals a high specific reversible capacity of more than 900 mAh/g at a charging rate of C (360 mA/g) along with a good cycling stability. Samples pyrolyzed in H2/Ar atmosphere show a high reversible capacity of 200 mAh/g even at a high charging/discharging rate of 20 C. Initial capacities were recovered after whole cycling procedure indicating their structural stabilities resisting any kind of exfoliations.
doi_str_mv 10.1111/jace.14323
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835669485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4181665901</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3333-8a337057f8bf311ec128e9fbb74dd8c3f7566e5e0c9e97ec1d5b6c0599b582123</originalsourceid><addsrcrecordid>eNpdkM1u2zAQhIkiAeqkueQJCPTSi1JSNEXyaCix48JofpwgR4KiVipdWXRIqa3fvoxd9JC97C72m8FiELqk5Iqm-roxFq7olOXsA5pQzmmWK1qcoAkhJM-EzMlHdBbjJq1UyekE1eshjHYYg-nwNUTX9tg3-N53-y2E7BqC-wU1Xru7EpcQzNZZPIPgW-gibnzAt679kT2aAfDK4aXv8XrwwbSAZ7td56wZnO_jJ3TamC7Cxb9-jp7nN0_lbba6WyzL2SprWapMGsYE4aKRVcMoBUtzCaqpKjGta2lZI3hRAAdiFSiRzjWvCku4UhWXOc3ZOfpy9N0F_zpCHPTWRQtdZ3rwY9RUsuSgppIn9PM7dOPH0KfvEkVVLpkSKlH0SP12Hez1LritCXtNiX5LW7-lrQ9p62-z8uYwJU121Lg4wJ__GhN-6kIwwfXL94Wel-SeLB6UfmJ_AXZ7gn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819283979</pqid></control><display><type>article</type><title>Structural Design of Polymer-Derived SiOC Ceramic Aerogels for High-Rate Li Ion Storage Applications</title><source>Wiley Journals</source><creator>Vallachira Warriam Sasikumar, Pradeep ; Zera, Emanuele ; Graczyk-Zajac, Magdalena ; Riedel, Ralf ; Soraru, Gian Domenico</creator><contributor>Dunn, B.</contributor><creatorcontrib>Vallachira Warriam Sasikumar, Pradeep ; Zera, Emanuele ; Graczyk-Zajac, Magdalena ; Riedel, Ralf ; Soraru, Gian Domenico ; Dunn, B.</creatorcontrib><description>SiOC ceramic aerogels with different porosity, pore size, and specific surface area have been synthesized through the polymer‐derived ceramic route by modifying the synthesis parameters and the pyrolysis steps. Preceramic aerogels are prepared by cross‐linking a linear polysiloxane with divinylbenzene (DVB) via hydrosilylation reaction in the presence of a Pt catalyst under highly diluted conditions. Acetone and cyclohexane are used as solvent in our study. Wet gels are subsequently supercritically dried with CO2 to get the final preceramic aerogels. The SiOC ceramic aerogels are obtained after a pyrolysis treatment at 900°C in two different atmospheres: pure Ar and H2 (3%)/Ar mixtures. The nature of the solvent has a profound influence of the aerogel microstructure in terms of porosity, pore size, and specific surface area. Synthesized SiOC ceramic aerogels have similar chemical compositions irrespective of processing conditions with ~40 wt% of free carbon distributed within remaining mixed SiOC matrix. The BET surface areas range from 215 m2/g for acetone samples to 80 m2/g for samples derived from cyclohexane solvent. The electrochemical characterization reveals a high specific reversible capacity of more than 900 mAh/g at a charging rate of C (360 mA/g) along with a good cycling stability. Samples pyrolyzed in H2/Ar atmosphere show a high reversible capacity of 200 mAh/g even at a high charging/discharging rate of 20 C. Initial capacities were recovered after whole cycling procedure indicating their structural stabilities resisting any kind of exfoliations.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.14323</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Columbus: Blackwell Publishing Ltd</publisher><subject>aerogel/aerosol ; Aerogels ; Atmospheres ; Ceramics ; Chemical synthesis ; Cycles ; Cyclohexane ; electrochemistry ; polymer precursor ; Polymers ; Porosity ; porous materials ; Silicon dioxide ; silicon oxycarbide ; Solvents</subject><ispartof>Journal of the American Ceramic Society, 2016-09, Vol.99 (9), p.2977-2983</ispartof><rights>2016 The American Ceramic Society</rights><rights>2016 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.14323$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.14323$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><contributor>Dunn, B.</contributor><creatorcontrib>Vallachira Warriam Sasikumar, Pradeep</creatorcontrib><creatorcontrib>Zera, Emanuele</creatorcontrib><creatorcontrib>Graczyk-Zajac, Magdalena</creatorcontrib><creatorcontrib>Riedel, Ralf</creatorcontrib><creatorcontrib>Soraru, Gian Domenico</creatorcontrib><title>Structural Design of Polymer-Derived SiOC Ceramic Aerogels for High-Rate Li Ion Storage Applications</title><title>Journal of the American Ceramic Society</title><addtitle>J. Am. Ceram. Soc</addtitle><description>SiOC ceramic aerogels with different porosity, pore size, and specific surface area have been synthesized through the polymer‐derived ceramic route by modifying the synthesis parameters and the pyrolysis steps. Preceramic aerogels are prepared by cross‐linking a linear polysiloxane with divinylbenzene (DVB) via hydrosilylation reaction in the presence of a Pt catalyst under highly diluted conditions. Acetone and cyclohexane are used as solvent in our study. Wet gels are subsequently supercritically dried with CO2 to get the final preceramic aerogels. The SiOC ceramic aerogels are obtained after a pyrolysis treatment at 900°C in two different atmospheres: pure Ar and H2 (3%)/Ar mixtures. The nature of the solvent has a profound influence of the aerogel microstructure in terms of porosity, pore size, and specific surface area. Synthesized SiOC ceramic aerogels have similar chemical compositions irrespective of processing conditions with ~40 wt% of free carbon distributed within remaining mixed SiOC matrix. The BET surface areas range from 215 m2/g for acetone samples to 80 m2/g for samples derived from cyclohexane solvent. The electrochemical characterization reveals a high specific reversible capacity of more than 900 mAh/g at a charging rate of C (360 mA/g) along with a good cycling stability. Samples pyrolyzed in H2/Ar atmosphere show a high reversible capacity of 200 mAh/g even at a high charging/discharging rate of 20 C. Initial capacities were recovered after whole cycling procedure indicating their structural stabilities resisting any kind of exfoliations.</description><subject>aerogel/aerosol</subject><subject>Aerogels</subject><subject>Atmospheres</subject><subject>Ceramics</subject><subject>Chemical synthesis</subject><subject>Cycles</subject><subject>Cyclohexane</subject><subject>electrochemistry</subject><subject>polymer precursor</subject><subject>Polymers</subject><subject>Porosity</subject><subject>porous materials</subject><subject>Silicon dioxide</subject><subject>silicon oxycarbide</subject><subject>Solvents</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkM1u2zAQhIkiAeqkueQJCPTSi1JSNEXyaCix48JofpwgR4KiVipdWXRIqa3fvoxd9JC97C72m8FiELqk5Iqm-roxFq7olOXsA5pQzmmWK1qcoAkhJM-EzMlHdBbjJq1UyekE1eshjHYYg-nwNUTX9tg3-N53-y2E7BqC-wU1Xru7EpcQzNZZPIPgW-gibnzAt679kT2aAfDK4aXv8XrwwbSAZ7td56wZnO_jJ3TamC7Cxb9-jp7nN0_lbba6WyzL2SprWapMGsYE4aKRVcMoBUtzCaqpKjGta2lZI3hRAAdiFSiRzjWvCku4UhWXOc3ZOfpy9N0F_zpCHPTWRQtdZ3rwY9RUsuSgppIn9PM7dOPH0KfvEkVVLpkSKlH0SP12Hez1LritCXtNiX5LW7-lrQ9p62-z8uYwJU121Lg4wJ__GhN-6kIwwfXL94Wel-SeLB6UfmJ_AXZ7gn0</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Vallachira Warriam Sasikumar, Pradeep</creator><creator>Zera, Emanuele</creator><creator>Graczyk-Zajac, Magdalena</creator><creator>Riedel, Ralf</creator><creator>Soraru, Gian Domenico</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201609</creationdate><title>Structural Design of Polymer-Derived SiOC Ceramic Aerogels for High-Rate Li Ion Storage Applications</title><author>Vallachira Warriam Sasikumar, Pradeep ; Zera, Emanuele ; Graczyk-Zajac, Magdalena ; Riedel, Ralf ; Soraru, Gian Domenico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3333-8a337057f8bf311ec128e9fbb74dd8c3f7566e5e0c9e97ec1d5b6c0599b582123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>aerogel/aerosol</topic><topic>Aerogels</topic><topic>Atmospheres</topic><topic>Ceramics</topic><topic>Chemical synthesis</topic><topic>Cycles</topic><topic>Cyclohexane</topic><topic>electrochemistry</topic><topic>polymer precursor</topic><topic>Polymers</topic><topic>Porosity</topic><topic>porous materials</topic><topic>Silicon dioxide</topic><topic>silicon oxycarbide</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vallachira Warriam Sasikumar, Pradeep</creatorcontrib><creatorcontrib>Zera, Emanuele</creatorcontrib><creatorcontrib>Graczyk-Zajac, Magdalena</creatorcontrib><creatorcontrib>Riedel, Ralf</creatorcontrib><creatorcontrib>Soraru, Gian Domenico</creatorcontrib><collection>Istex</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vallachira Warriam Sasikumar, Pradeep</au><au>Zera, Emanuele</au><au>Graczyk-Zajac, Magdalena</au><au>Riedel, Ralf</au><au>Soraru, Gian Domenico</au><au>Dunn, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Design of Polymer-Derived SiOC Ceramic Aerogels for High-Rate Li Ion Storage Applications</atitle><jtitle>Journal of the American Ceramic Society</jtitle><addtitle>J. Am. Ceram. Soc</addtitle><date>2016-09</date><risdate>2016</risdate><volume>99</volume><issue>9</issue><spage>2977</spage><epage>2983</epage><pages>2977-2983</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>SiOC ceramic aerogels with different porosity, pore size, and specific surface area have been synthesized through the polymer‐derived ceramic route by modifying the synthesis parameters and the pyrolysis steps. Preceramic aerogels are prepared by cross‐linking a linear polysiloxane with divinylbenzene (DVB) via hydrosilylation reaction in the presence of a Pt catalyst under highly diluted conditions. Acetone and cyclohexane are used as solvent in our study. Wet gels are subsequently supercritically dried with CO2 to get the final preceramic aerogels. The SiOC ceramic aerogels are obtained after a pyrolysis treatment at 900°C in two different atmospheres: pure Ar and H2 (3%)/Ar mixtures. The nature of the solvent has a profound influence of the aerogel microstructure in terms of porosity, pore size, and specific surface area. Synthesized SiOC ceramic aerogels have similar chemical compositions irrespective of processing conditions with ~40 wt% of free carbon distributed within remaining mixed SiOC matrix. The BET surface areas range from 215 m2/g for acetone samples to 80 m2/g for samples derived from cyclohexane solvent. The electrochemical characterization reveals a high specific reversible capacity of more than 900 mAh/g at a charging rate of C (360 mA/g) along with a good cycling stability. Samples pyrolyzed in H2/Ar atmosphere show a high reversible capacity of 200 mAh/g even at a high charging/discharging rate of 20 C. Initial capacities were recovered after whole cycling procedure indicating their structural stabilities resisting any kind of exfoliations.</abstract><cop>Columbus</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jace.14323</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2016-09, Vol.99 (9), p.2977-2983
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_miscellaneous_1835669485
source Wiley Journals
subjects aerogel/aerosol
Aerogels
Atmospheres
Ceramics
Chemical synthesis
Cycles
Cyclohexane
electrochemistry
polymer precursor
Polymers
Porosity
porous materials
Silicon dioxide
silicon oxycarbide
Solvents
title Structural Design of Polymer-Derived SiOC Ceramic Aerogels for High-Rate Li Ion Storage Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Design%20of%20Polymer-Derived%20SiOC%20Ceramic%20Aerogels%20for%20High-Rate%20Li%20Ion%20Storage%20Applications&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Vallachira%20Warriam%20Sasikumar,%20Pradeep&rft.date=2016-09&rft.volume=99&rft.issue=9&rft.spage=2977&rft.epage=2983&rft.pages=2977-2983&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/jace.14323&rft_dat=%3Cproquest_wiley%3E4181665901%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1819283979&rft_id=info:pmid/&rfr_iscdi=true