Solution of the point reactor kinetics equations with temperature feedback by the ITS2 method

The ITS2 method is used to solve the point-reactor kinetics equations in the integral formulation with arbitrary number of delayed neutron groups and Newtonian temperature feedback. The method is based on low-order Taylor series expansions of neutron density and reactivity functions and uses variabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in nuclear energy (New series) 2016-08, Vol.91, p.240-249
Hauptverfasser: Bogado Leite, Sérgio Q., Vilhena, Marco Tullio de, Bodmann, Bardo E.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 249
container_issue
container_start_page 240
container_title Progress in nuclear energy (New series)
container_volume 91
creator Bogado Leite, Sérgio Q.
Vilhena, Marco Tullio de
Bodmann, Bardo E.J.
description The ITS2 method is used to solve the point-reactor kinetics equations in the integral formulation with arbitrary number of delayed neutron groups and Newtonian temperature feedback. The method is based on low-order Taylor series expansions of neutron density and reactivity functions and uses variable time steps to control the numerical instabilities resulting from the stiff nature of the governing equations. Time steps are determined through an analytic criterion relating their magnitudes to the maximum admissible truncation error in the neutron-density expansion series. Temperature feedback is included in the reactivity as a function of the neutron density for different input types, including step change with adiabatic temperature feedback and compensated ramp functions. An iterative procedure is applied to determine the time steps while simultaneously updating the reactivity function. Numerical results show the ITS2 method is highly accurate for solving point reactor dynamics problems with temperature feedback. •We develop a solution to the point kinetics equations based on Taylor series expansions of neutron density and reactivity functions.•We use an analytic criterion for time step control, based on the desired accuracy.•We apply the solution to different reactivity inputs with temperature feedback.•Results are found in excellent agreement with some of the best methods in the literature.
doi_str_mv 10.1016/j.pnucene.2016.05.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835663931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0149197016301081</els_id><sourcerecordid>1835663931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-23d94b05cb9b4084262ce6e5034bb2944ed0834cdc5366281fd54324ea2cbc223</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRb0AiVL4BCQv2TT4mSYrhCoelSqxaFkiy3YmqtskTm0H1L8npexZjWZ07pXmIHRHSUYJzR92Wd8NFjrI2LhmRGaE0As0IVSUM1rOyRW6jnE3HudUygn6XPtmSM532Nc4bQH33nUJB9A2-YD3roPkbMRwGPQJi_jbpS1O0PYQdBoC4BqgMtrusTn-Niw3a4ZbSFtf3aDLWjcRbv_mFH28PG8Wb7PV--ty8bSaWS5YmjFelcIQaU1pBCkEy5mFHCThwhhWCgEVKbiwlZU8z1lB60oKzgRoZo1ljE_R_bm3D_4wQEyqddFC0-gO_BAVLbjMc15yOqLyjNrgYwxQqz64VoejokSdFKqd-lOoTgoVkWq0NeYezzkY__hyEFS0DjoLlQtgk6q8-6fhB1Nnf2I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835663931</pqid></control><display><type>article</type><title>Solution of the point reactor kinetics equations with temperature feedback by the ITS2 method</title><source>Elsevier ScienceDirect Journals</source><creator>Bogado Leite, Sérgio Q. ; Vilhena, Marco Tullio de ; Bodmann, Bardo E.J.</creator><creatorcontrib>Bogado Leite, Sérgio Q. ; Vilhena, Marco Tullio de ; Bodmann, Bardo E.J.</creatorcontrib><description>The ITS2 method is used to solve the point-reactor kinetics equations in the integral formulation with arbitrary number of delayed neutron groups and Newtonian temperature feedback. The method is based on low-order Taylor series expansions of neutron density and reactivity functions and uses variable time steps to control the numerical instabilities resulting from the stiff nature of the governing equations. Time steps are determined through an analytic criterion relating their magnitudes to the maximum admissible truncation error in the neutron-density expansion series. Temperature feedback is included in the reactivity as a function of the neutron density for different input types, including step change with adiabatic temperature feedback and compensated ramp functions. An iterative procedure is applied to determine the time steps while simultaneously updating the reactivity function. Numerical results show the ITS2 method is highly accurate for solving point reactor dynamics problems with temperature feedback. •We develop a solution to the point kinetics equations based on Taylor series expansions of neutron density and reactivity functions.•We use an analytic criterion for time step control, based on the desired accuracy.•We apply the solution to different reactivity inputs with temperature feedback.•Results are found in excellent agreement with some of the best methods in the literature.</description><identifier>ISSN: 0149-1970</identifier><identifier>DOI: 10.1016/j.pnucene.2016.05.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Control systems ; Control theory ; Feedback ; Mathematical analysis ; Mathematical models ; Nuclear power generation ; Nuclear reactor components ; Nuclear reactors ; Point kinetics equations ; Temperature feedback ; Variable time step</subject><ispartof>Progress in nuclear energy (New series), 2016-08, Vol.91, p.240-249</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-23d94b05cb9b4084262ce6e5034bb2944ed0834cdc5366281fd54324ea2cbc223</citedby><cites>FETCH-LOGICAL-c342t-23d94b05cb9b4084262ce6e5034bb2944ed0834cdc5366281fd54324ea2cbc223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.pnucene.2016.05.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Bogado Leite, Sérgio Q.</creatorcontrib><creatorcontrib>Vilhena, Marco Tullio de</creatorcontrib><creatorcontrib>Bodmann, Bardo E.J.</creatorcontrib><title>Solution of the point reactor kinetics equations with temperature feedback by the ITS2 method</title><title>Progress in nuclear energy (New series)</title><description>The ITS2 method is used to solve the point-reactor kinetics equations in the integral formulation with arbitrary number of delayed neutron groups and Newtonian temperature feedback. The method is based on low-order Taylor series expansions of neutron density and reactivity functions and uses variable time steps to control the numerical instabilities resulting from the stiff nature of the governing equations. Time steps are determined through an analytic criterion relating their magnitudes to the maximum admissible truncation error in the neutron-density expansion series. Temperature feedback is included in the reactivity as a function of the neutron density for different input types, including step change with adiabatic temperature feedback and compensated ramp functions. An iterative procedure is applied to determine the time steps while simultaneously updating the reactivity function. Numerical results show the ITS2 method is highly accurate for solving point reactor dynamics problems with temperature feedback. •We develop a solution to the point kinetics equations based on Taylor series expansions of neutron density and reactivity functions.•We use an analytic criterion for time step control, based on the desired accuracy.•We apply the solution to different reactivity inputs with temperature feedback.•Results are found in excellent agreement with some of the best methods in the literature.</description><subject>Control systems</subject><subject>Control theory</subject><subject>Feedback</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nuclear power generation</subject><subject>Nuclear reactor components</subject><subject>Nuclear reactors</subject><subject>Point kinetics equations</subject><subject>Temperature feedback</subject><subject>Variable time step</subject><issn>0149-1970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRb0AiVL4BCQv2TT4mSYrhCoelSqxaFkiy3YmqtskTm0H1L8npexZjWZ07pXmIHRHSUYJzR92Wd8NFjrI2LhmRGaE0As0IVSUM1rOyRW6jnE3HudUygn6XPtmSM532Nc4bQH33nUJB9A2-YD3roPkbMRwGPQJi_jbpS1O0PYQdBoC4BqgMtrusTn-Niw3a4ZbSFtf3aDLWjcRbv_mFH28PG8Wb7PV--ty8bSaWS5YmjFelcIQaU1pBCkEy5mFHCThwhhWCgEVKbiwlZU8z1lB60oKzgRoZo1ljE_R_bm3D_4wQEyqddFC0-gO_BAVLbjMc15yOqLyjNrgYwxQqz64VoejokSdFKqd-lOoTgoVkWq0NeYezzkY__hyEFS0DjoLlQtgk6q8-6fhB1Nnf2I</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Bogado Leite, Sérgio Q.</creator><creator>Vilhena, Marco Tullio de</creator><creator>Bodmann, Bardo E.J.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201608</creationdate><title>Solution of the point reactor kinetics equations with temperature feedback by the ITS2 method</title><author>Bogado Leite, Sérgio Q. ; Vilhena, Marco Tullio de ; Bodmann, Bardo E.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-23d94b05cb9b4084262ce6e5034bb2944ed0834cdc5366281fd54324ea2cbc223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Control systems</topic><topic>Control theory</topic><topic>Feedback</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nuclear power generation</topic><topic>Nuclear reactor components</topic><topic>Nuclear reactors</topic><topic>Point kinetics equations</topic><topic>Temperature feedback</topic><topic>Variable time step</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bogado Leite, Sérgio Q.</creatorcontrib><creatorcontrib>Vilhena, Marco Tullio de</creatorcontrib><creatorcontrib>Bodmann, Bardo E.J.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Progress in nuclear energy (New series)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bogado Leite, Sérgio Q.</au><au>Vilhena, Marco Tullio de</au><au>Bodmann, Bardo E.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution of the point reactor kinetics equations with temperature feedback by the ITS2 method</atitle><jtitle>Progress in nuclear energy (New series)</jtitle><date>2016-08</date><risdate>2016</risdate><volume>91</volume><spage>240</spage><epage>249</epage><pages>240-249</pages><issn>0149-1970</issn><abstract>The ITS2 method is used to solve the point-reactor kinetics equations in the integral formulation with arbitrary number of delayed neutron groups and Newtonian temperature feedback. The method is based on low-order Taylor series expansions of neutron density and reactivity functions and uses variable time steps to control the numerical instabilities resulting from the stiff nature of the governing equations. Time steps are determined through an analytic criterion relating their magnitudes to the maximum admissible truncation error in the neutron-density expansion series. Temperature feedback is included in the reactivity as a function of the neutron density for different input types, including step change with adiabatic temperature feedback and compensated ramp functions. An iterative procedure is applied to determine the time steps while simultaneously updating the reactivity function. Numerical results show the ITS2 method is highly accurate for solving point reactor dynamics problems with temperature feedback. •We develop a solution to the point kinetics equations based on Taylor series expansions of neutron density and reactivity functions.•We use an analytic criterion for time step control, based on the desired accuracy.•We apply the solution to different reactivity inputs with temperature feedback.•Results are found in excellent agreement with some of the best methods in the literature.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.pnucene.2016.05.001</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0149-1970
ispartof Progress in nuclear energy (New series), 2016-08, Vol.91, p.240-249
issn 0149-1970
language eng
recordid cdi_proquest_miscellaneous_1835663931
source Elsevier ScienceDirect Journals
subjects Control systems
Control theory
Feedback
Mathematical analysis
Mathematical models
Nuclear power generation
Nuclear reactor components
Nuclear reactors
Point kinetics equations
Temperature feedback
Variable time step
title Solution of the point reactor kinetics equations with temperature feedback by the ITS2 method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A48%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20of%20the%20point%20reactor%20kinetics%20equations%20with%20temperature%20feedback%20by%20the%20ITS2%20method&rft.jtitle=Progress%20in%20nuclear%20energy%20(New%20series)&rft.au=Bogado%20Leite,%20S%C3%A9rgio%20Q.&rft.date=2016-08&rft.volume=91&rft.spage=240&rft.epage=249&rft.pages=240-249&rft.issn=0149-1970&rft_id=info:doi/10.1016/j.pnucene.2016.05.001&rft_dat=%3Cproquest_cross%3E1835663931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835663931&rft_id=info:pmid/&rft_els_id=S0149197016301081&rfr_iscdi=true