Hole-Transporting Materials in Inverted Planar Perovskite Solar Cells

Hybrid organic–inorganic halide‐perovskite‐based solar cells have achieved notable progress. A hot topic in this field is exploring inexpensive, stable and effective hole‐transporting materials (HTMs) in order to improve the device performance and be favorable for large‐scale production in the futur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2016-09, Vol.6 (17), p.np-n/a
Hauptverfasser: Yan, Weibo, Ye, Senyun, Li, Yunlong, Sun, Weihai, Rao, Haixia, Liu, Zhiwei, Bian, Zuqiang, Huang, Chunhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 17
container_start_page np
container_title Advanced energy materials
container_volume 6
creator Yan, Weibo
Ye, Senyun
Li, Yunlong
Sun, Weihai
Rao, Haixia
Liu, Zhiwei
Bian, Zuqiang
Huang, Chunhui
description Hybrid organic–inorganic halide‐perovskite‐based solar cells have achieved notable progress. A hot topic in this field is exploring inexpensive, stable and effective hole‐transporting materials (HTMs) in order to improve the device performance and be favorable for large‐scale production in the future. The HTMs have been proven to be an important component of perovskite solar cells, which can form selective contact being favorable for reducing charge recombination and effective hole collection, thus resulting in the enhancement of the open‐circuit voltage and the fill factor. Here, an overview of the design and development of HTMs is given, mainly divided into conductive polymers, inorganic p‐type semiconductors in inverted‐structure‐based planar perovskite solar cells. The influences of their mobility, work function and film property on device performance are discussed. Hole‐transporting materials in inverted planar perovskite solar cells have been widely studied in the past years. Most commonly these are p‐type wide band‐gap semiconductors which can be mainly divided into conductive polymers and inorganic p‐type semiconductors. Their energy levels and chemical structures are summarized and the effects of their properties on the device performance are discussed in detail.
doi_str_mv 10.1002/aenm.201600474
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835663917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835663917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4954-bbf4351e88a1b6c5c92faf506bea0d22133fab13e7f4a0bab3d9b251fd45460e3</originalsourceid><addsrcrecordid>eNqFkE1PwkAQhhujiQS5em7ixUtxt_tReiQFgQSQKGriZbPbTk2h7OJuQfn3ltQQ48W5zGTyPJPJ63nXGHUxQuGdBL3phghzhGhEz7wW5pgGvEfR-Wkm4aXXcW6F6qIxRoS0vOHYlBAsrdRua2xV6Hd_JiuwhSydX2h_ovdgK8j8RSm1tP4CrNm7dVGB_2TKepFAWbor7yKvBej89Lb3fD9cJuNg-jCaJP1pkNKY0UCpnBKGodeTWPGUpXGYy5whrkCiLAwxIblUmECUU4mUVCSLVchwnlFGOQLS9m6bu1trPnbgKrEpXFp_IDWYnRO4RxjnJMZRjd78QVdmZ3X9XU3hCEUhiY9Ut6FSa5yzkIutLTbSHgRG4hisOAYrTsHWQtwIn0UJh39o0R_OZ7_doHELV8HXyZV2LXhEIiZe5yPxhl4G42TwKEbkGxToiwY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1817072397</pqid></control><display><type>article</type><title>Hole-Transporting Materials in Inverted Planar Perovskite Solar Cells</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Yan, Weibo ; Ye, Senyun ; Li, Yunlong ; Sun, Weihai ; Rao, Haixia ; Liu, Zhiwei ; Bian, Zuqiang ; Huang, Chunhui</creator><creatorcontrib>Yan, Weibo ; Ye, Senyun ; Li, Yunlong ; Sun, Weihai ; Rao, Haixia ; Liu, Zhiwei ; Bian, Zuqiang ; Huang, Chunhui</creatorcontrib><description>Hybrid organic–inorganic halide‐perovskite‐based solar cells have achieved notable progress. A hot topic in this field is exploring inexpensive, stable and effective hole‐transporting materials (HTMs) in order to improve the device performance and be favorable for large‐scale production in the future. The HTMs have been proven to be an important component of perovskite solar cells, which can form selective contact being favorable for reducing charge recombination and effective hole collection, thus resulting in the enhancement of the open‐circuit voltage and the fill factor. Here, an overview of the design and development of HTMs is given, mainly divided into conductive polymers, inorganic p‐type semiconductors in inverted‐structure‐based planar perovskite solar cells. The influences of their mobility, work function and film property on device performance are discussed. Hole‐transporting materials in inverted planar perovskite solar cells have been widely studied in the past years. Most commonly these are p‐type wide band‐gap semiconductors which can be mainly divided into conductive polymers and inorganic p‐type semiconductors. Their energy levels and chemical structures are summarized and the effects of their properties on the device performance are discussed in detail.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201600474</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>conductive polymers ; Devices ; Electronics industry ; hole-transporting materials ; inorganic p-type semiconductors ; inverted planar structures ; P-type semiconductors ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; Polymers ; Semiconductors ; Solar cells ; Voltage</subject><ispartof>Advanced energy materials, 2016-09, Vol.6 (17), p.np-n/a</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4954-bbf4351e88a1b6c5c92faf506bea0d22133fab13e7f4a0bab3d9b251fd45460e3</citedby><cites>FETCH-LOGICAL-c4954-bbf4351e88a1b6c5c92faf506bea0d22133fab13e7f4a0bab3d9b251fd45460e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201600474$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201600474$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yan, Weibo</creatorcontrib><creatorcontrib>Ye, Senyun</creatorcontrib><creatorcontrib>Li, Yunlong</creatorcontrib><creatorcontrib>Sun, Weihai</creatorcontrib><creatorcontrib>Rao, Haixia</creatorcontrib><creatorcontrib>Liu, Zhiwei</creatorcontrib><creatorcontrib>Bian, Zuqiang</creatorcontrib><creatorcontrib>Huang, Chunhui</creatorcontrib><title>Hole-Transporting Materials in Inverted Planar Perovskite Solar Cells</title><title>Advanced energy materials</title><addtitle>Adv. Energy Mater</addtitle><description>Hybrid organic–inorganic halide‐perovskite‐based solar cells have achieved notable progress. A hot topic in this field is exploring inexpensive, stable and effective hole‐transporting materials (HTMs) in order to improve the device performance and be favorable for large‐scale production in the future. The HTMs have been proven to be an important component of perovskite solar cells, which can form selective contact being favorable for reducing charge recombination and effective hole collection, thus resulting in the enhancement of the open‐circuit voltage and the fill factor. Here, an overview of the design and development of HTMs is given, mainly divided into conductive polymers, inorganic p‐type semiconductors in inverted‐structure‐based planar perovskite solar cells. The influences of their mobility, work function and film property on device performance are discussed. Hole‐transporting materials in inverted planar perovskite solar cells have been widely studied in the past years. Most commonly these are p‐type wide band‐gap semiconductors which can be mainly divided into conductive polymers and inorganic p‐type semiconductors. Their energy levels and chemical structures are summarized and the effects of their properties on the device performance are discussed in detail.</description><subject>conductive polymers</subject><subject>Devices</subject><subject>Electronics industry</subject><subject>hole-transporting materials</subject><subject>inorganic p-type semiconductors</subject><subject>inverted planar structures</subject><subject>P-type semiconductors</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Polymers</subject><subject>Semiconductors</subject><subject>Solar cells</subject><subject>Voltage</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwkAQhhujiQS5em7ixUtxt_tReiQFgQSQKGriZbPbTk2h7OJuQfn3ltQQ48W5zGTyPJPJ63nXGHUxQuGdBL3phghzhGhEz7wW5pgGvEfR-Wkm4aXXcW6F6qIxRoS0vOHYlBAsrdRua2xV6Hd_JiuwhSydX2h_ovdgK8j8RSm1tP4CrNm7dVGB_2TKepFAWbor7yKvBej89Lb3fD9cJuNg-jCaJP1pkNKY0UCpnBKGodeTWPGUpXGYy5whrkCiLAwxIblUmECUU4mUVCSLVchwnlFGOQLS9m6bu1trPnbgKrEpXFp_IDWYnRO4RxjnJMZRjd78QVdmZ3X9XU3hCEUhiY9Ut6FSa5yzkIutLTbSHgRG4hisOAYrTsHWQtwIn0UJh39o0R_OZ7_doHELV8HXyZV2LXhEIiZe5yPxhl4G42TwKEbkGxToiwY</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Yan, Weibo</creator><creator>Ye, Senyun</creator><creator>Li, Yunlong</creator><creator>Sun, Weihai</creator><creator>Rao, Haixia</creator><creator>Liu, Zhiwei</creator><creator>Bian, Zuqiang</creator><creator>Huang, Chunhui</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160901</creationdate><title>Hole-Transporting Materials in Inverted Planar Perovskite Solar Cells</title><author>Yan, Weibo ; Ye, Senyun ; Li, Yunlong ; Sun, Weihai ; Rao, Haixia ; Liu, Zhiwei ; Bian, Zuqiang ; Huang, Chunhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4954-bbf4351e88a1b6c5c92faf506bea0d22133fab13e7f4a0bab3d9b251fd45460e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>conductive polymers</topic><topic>Devices</topic><topic>Electronics industry</topic><topic>hole-transporting materials</topic><topic>inorganic p-type semiconductors</topic><topic>inverted planar structures</topic><topic>P-type semiconductors</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Polymers</topic><topic>Semiconductors</topic><topic>Solar cells</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Weibo</creatorcontrib><creatorcontrib>Ye, Senyun</creatorcontrib><creatorcontrib>Li, Yunlong</creatorcontrib><creatorcontrib>Sun, Weihai</creatorcontrib><creatorcontrib>Rao, Haixia</creatorcontrib><creatorcontrib>Liu, Zhiwei</creatorcontrib><creatorcontrib>Bian, Zuqiang</creatorcontrib><creatorcontrib>Huang, Chunhui</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Weibo</au><au>Ye, Senyun</au><au>Li, Yunlong</au><au>Sun, Weihai</au><au>Rao, Haixia</au><au>Liu, Zhiwei</au><au>Bian, Zuqiang</au><au>Huang, Chunhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hole-Transporting Materials in Inverted Planar Perovskite Solar Cells</atitle><jtitle>Advanced energy materials</jtitle><addtitle>Adv. Energy Mater</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>6</volume><issue>17</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Hybrid organic–inorganic halide‐perovskite‐based solar cells have achieved notable progress. A hot topic in this field is exploring inexpensive, stable and effective hole‐transporting materials (HTMs) in order to improve the device performance and be favorable for large‐scale production in the future. The HTMs have been proven to be an important component of perovskite solar cells, which can form selective contact being favorable for reducing charge recombination and effective hole collection, thus resulting in the enhancement of the open‐circuit voltage and the fill factor. Here, an overview of the design and development of HTMs is given, mainly divided into conductive polymers, inorganic p‐type semiconductors in inverted‐structure‐based planar perovskite solar cells. The influences of their mobility, work function and film property on device performance are discussed. Hole‐transporting materials in inverted planar perovskite solar cells have been widely studied in the past years. Most commonly these are p‐type wide band‐gap semiconductors which can be mainly divided into conductive polymers and inorganic p‐type semiconductors. Their energy levels and chemical structures are summarized and the effects of their properties on the device performance are discussed in detail.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aenm.201600474</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2016-09, Vol.6 (17), p.np-n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_miscellaneous_1835663917
source Wiley Online Library - AutoHoldings Journals
subjects conductive polymers
Devices
Electronics industry
hole-transporting materials
inorganic p-type semiconductors
inverted planar structures
P-type semiconductors
perovskite solar cells
Perovskites
Photovoltaic cells
Polymers
Semiconductors
Solar cells
Voltage
title Hole-Transporting Materials in Inverted Planar Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A37%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hole-Transporting%20Materials%20in%20Inverted%20Planar%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20energy%20materials&rft.au=Yan,%20Weibo&rft.date=2016-09-01&rft.volume=6&rft.issue=17&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201600474&rft_dat=%3Cproquest_cross%3E1835663917%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1817072397&rft_id=info:pmid/&rfr_iscdi=true