Estimation of a two-component mixture model with applications to multiple testing

We consider a two-component mixture model with one known component. We develop methods for estimating the mixing proportion and the unknown distribution non-parametrically, given independent and identically distributed data from the mixture model, using ideas from shape-restricted function estimatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2016-09, Vol.78 (4), p.869-893
Hauptverfasser: Patra, Rohit Kumar, Sen, Bodhisattva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 893
container_issue 4
container_start_page 869
container_title Journal of the Royal Statistical Society. Series B, Statistical methodology
container_volume 78
creator Patra, Rohit Kumar
Sen, Bodhisattva
description We consider a two-component mixture model with one known component. We develop methods for estimating the mixing proportion and the unknown distribution non-parametrically, given independent and identically distributed data from the mixture model, using ideas from shape-restricted function estimation. We establish the consistency of our estimators. We find the rate of convergence and asymptotic limit of the estimator for the mixing proportion. Completely automated distribution-free honest finite sample lower confidence bounds are developed for the mixing proportion. Connection to the problem of multiple testing is discussed. The identifiability of the model and the estimation of the density of the unknown distribution are also addressed. We compare the estimators proposed, which are easily implementable, with some of the existing procedures through simulation studies and analyse two data sets: one arising from an application in astronomy and the other from a microarray experiment.
doi_str_mv 10.1111/rssb.12148
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835662640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24775367</jstor_id><sourcerecordid>24775367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4278-bc102cedf1db3a5911b404663fc85b62fef697c3e3482799e637d9372fe30eb33</originalsourceid><addsrcrecordid>eNp9kc9LwzAUx4MoOKcX70LAiwjV5keT9qhjU2EoOkXxEtos1cy2qUnK5n9vZtWDB9_lPfh-vu-FbwDYR_EJCnVqnStOEEY03QADRBmPspSlm2EmLIs4RXgb7Di3iEMxTgbgduy8rnOvTQNNCXPolyaSpm5NoxoPa73ynVWwNnNVwaX2rzBv20rLL4eD3sC6q7xuKwW9Cqual12wVeaVU3vffQgeJuP70WU0vbm4Gp1NI0kxT6NCohhLNS_RvCB5kiFU0JgyRkqZJgXDpSpZxiVRhKaYZ5lihM8zwoNAYlUQMgRH_d7Wmvcu3Ba1dlJVVd4o0zmBUpIwhhmNA3r4B12YzjbhdYGKecoIJmvquKekNc5ZVYrWhmjsh0CxWKcr1umKr3QDjHp4qSv18Q8p7maz8x_PQe9ZOG_srwdTzhMSfmMIol7XzqvVr57bNxFUnojH6wvxjGe3Ez5F4ol8AuGOlcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1807863230</pqid></control><display><type>article</type><title>Estimation of a two-component mixture model with applications to multiple testing</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Patra, Rohit Kumar ; Sen, Bodhisattva</creator><creatorcontrib>Patra, Rohit Kumar ; Sen, Bodhisattva</creatorcontrib><description>We consider a two-component mixture model with one known component. We develop methods for estimating the mixing proportion and the unknown distribution non-parametrically, given independent and identically distributed data from the mixture model, using ideas from shape-restricted function estimation. We establish the consistency of our estimators. We find the rate of convergence and asymptotic limit of the estimator for the mixing proportion. Completely automated distribution-free honest finite sample lower confidence bounds are developed for the mixing proportion. Connection to the problem of multiple testing is discussed. The identifiability of the model and the estimation of the density of the unknown distribution are also addressed. We compare the estimators proposed, which are easily implementable, with some of the existing procedures through simulation studies and analyse two data sets: one arising from an application in astronomy and the other from a microarray experiment.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/rssb.12148</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Asymptotic properties ; Automation ; Computer simulation ; Confidence intervals ; Cramér-von Mises statistic ; Cross-validation ; Data analysis ; Estimating ; Estimators ; Functional delta method ; Identifiability ; Local false discovery rate ; Lower confidence bound ; Mathematical analysis ; Microarray experiment ; Normal distribution ; Projection operator ; Samples ; Shape-restricted function estimation ; Statistical methods ; Statistics ; Studies</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2016-09, Vol.78 (4), p.869-893</ispartof><rights>Copyright © 2016 The Royal Statistical Society and Blackwell Publishing Ltd.</rights><rights>2015 Royal Statistical Society</rights><rights>Copyright © 2016 The Royal Statistical Society and Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4278-bc102cedf1db3a5911b404663fc85b62fef697c3e3482799e637d9372fe30eb33</citedby><cites>FETCH-LOGICAL-c4278-bc102cedf1db3a5911b404663fc85b62fef697c3e3482799e637d9372fe30eb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24775367$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24775367$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,829,1412,27905,27906,45555,45556,57998,58002,58231,58235</link.rule.ids></links><search><creatorcontrib>Patra, Rohit Kumar</creatorcontrib><creatorcontrib>Sen, Bodhisattva</creatorcontrib><title>Estimation of a two-component mixture model with applications to multiple testing</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><addtitle>J. R. Stat. Soc. B</addtitle><description>We consider a two-component mixture model with one known component. We develop methods for estimating the mixing proportion and the unknown distribution non-parametrically, given independent and identically distributed data from the mixture model, using ideas from shape-restricted function estimation. We establish the consistency of our estimators. We find the rate of convergence and asymptotic limit of the estimator for the mixing proportion. Completely automated distribution-free honest finite sample lower confidence bounds are developed for the mixing proportion. Connection to the problem of multiple testing is discussed. The identifiability of the model and the estimation of the density of the unknown distribution are also addressed. We compare the estimators proposed, which are easily implementable, with some of the existing procedures through simulation studies and analyse two data sets: one arising from an application in astronomy and the other from a microarray experiment.</description><subject>Asymptotic properties</subject><subject>Automation</subject><subject>Computer simulation</subject><subject>Confidence intervals</subject><subject>Cramér-von Mises statistic</subject><subject>Cross-validation</subject><subject>Data analysis</subject><subject>Estimating</subject><subject>Estimators</subject><subject>Functional delta method</subject><subject>Identifiability</subject><subject>Local false discovery rate</subject><subject>Lower confidence bound</subject><subject>Mathematical analysis</subject><subject>Microarray experiment</subject><subject>Normal distribution</subject><subject>Projection operator</subject><subject>Samples</subject><subject>Shape-restricted function estimation</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Studies</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kc9LwzAUx4MoOKcX70LAiwjV5keT9qhjU2EoOkXxEtos1cy2qUnK5n9vZtWDB9_lPfh-vu-FbwDYR_EJCnVqnStOEEY03QADRBmPspSlm2EmLIs4RXgb7Di3iEMxTgbgduy8rnOvTQNNCXPolyaSpm5NoxoPa73ynVWwNnNVwaX2rzBv20rLL4eD3sC6q7xuKwW9Cqual12wVeaVU3vffQgeJuP70WU0vbm4Gp1NI0kxT6NCohhLNS_RvCB5kiFU0JgyRkqZJgXDpSpZxiVRhKaYZ5lihM8zwoNAYlUQMgRH_d7Wmvcu3Ba1dlJVVd4o0zmBUpIwhhmNA3r4B12YzjbhdYGKecoIJmvquKekNc5ZVYrWhmjsh0CxWKcr1umKr3QDjHp4qSv18Q8p7maz8x_PQe9ZOG_srwdTzhMSfmMIol7XzqvVr57bNxFUnojH6wvxjGe3Ez5F4ol8AuGOlcA</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Patra, Rohit Kumar</creator><creator>Sen, Bodhisattva</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201609</creationdate><title>Estimation of a two-component mixture model with applications to multiple testing</title><author>Patra, Rohit Kumar ; Sen, Bodhisattva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4278-bc102cedf1db3a5911b404663fc85b62fef697c3e3482799e637d9372fe30eb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Asymptotic properties</topic><topic>Automation</topic><topic>Computer simulation</topic><topic>Confidence intervals</topic><topic>Cramér-von Mises statistic</topic><topic>Cross-validation</topic><topic>Data analysis</topic><topic>Estimating</topic><topic>Estimators</topic><topic>Functional delta method</topic><topic>Identifiability</topic><topic>Local false discovery rate</topic><topic>Lower confidence bound</topic><topic>Mathematical analysis</topic><topic>Microarray experiment</topic><topic>Normal distribution</topic><topic>Projection operator</topic><topic>Samples</topic><topic>Shape-restricted function estimation</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patra, Rohit Kumar</creatorcontrib><creatorcontrib>Sen, Bodhisattva</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patra, Rohit Kumar</au><au>Sen, Bodhisattva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of a two-component mixture model with applications to multiple testing</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><addtitle>J. R. Stat. Soc. B</addtitle><date>2016-09</date><risdate>2016</risdate><volume>78</volume><issue>4</issue><spage>869</spage><epage>893</epage><pages>869-893</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>We consider a two-component mixture model with one known component. We develop methods for estimating the mixing proportion and the unknown distribution non-parametrically, given independent and identically distributed data from the mixture model, using ideas from shape-restricted function estimation. We establish the consistency of our estimators. We find the rate of convergence and asymptotic limit of the estimator for the mixing proportion. Completely automated distribution-free honest finite sample lower confidence bounds are developed for the mixing proportion. Connection to the problem of multiple testing is discussed. The identifiability of the model and the estimation of the density of the unknown distribution are also addressed. We compare the estimators proposed, which are easily implementable, with some of the existing procedures through simulation studies and analyse two data sets: one arising from an application in astronomy and the other from a microarray experiment.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/rssb.12148</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1369-7412
ispartof Journal of the Royal Statistical Society. Series B, Statistical methodology, 2016-09, Vol.78 (4), p.869-893
issn 1369-7412
1467-9868
language eng
recordid cdi_proquest_miscellaneous_1835662640
source Wiley Online Library Journals Frontfile Complete; Business Source Complete; JSTOR Mathematics & Statistics; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current)
subjects Asymptotic properties
Automation
Computer simulation
Confidence intervals
Cramér-von Mises statistic
Cross-validation
Data analysis
Estimating
Estimators
Functional delta method
Identifiability
Local false discovery rate
Lower confidence bound
Mathematical analysis
Microarray experiment
Normal distribution
Projection operator
Samples
Shape-restricted function estimation
Statistical methods
Statistics
Studies
title Estimation of a two-component mixture model with applications to multiple testing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A44%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20a%20two-component%20mixture%20model%20with%20applications%20to%20multiple%20testing&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Patra,%20Rohit%20Kumar&rft.date=2016-09&rft.volume=78&rft.issue=4&rft.spage=869&rft.epage=893&rft.pages=869-893&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/rssb.12148&rft_dat=%3Cjstor_proqu%3E24775367%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1807863230&rft_id=info:pmid/&rft_jstor_id=24775367&rfr_iscdi=true