Dataflow object detection system for FPGA-based smart camera

Embedded computer vision based smart systems raise challenging issues in many research fields, including real-time vision processing, communication protocols or distributed algorithms. The amount of data generated by cameras using high resolution image sensors requires powerful computing systems to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET circuits, devices & systems devices & systems, 2016-07, Vol.10 (4), p.280-291
Hauptverfasser: Bourrasset, Cédric, Maggiani, Luca, Sérot, Jocelyn, Berry, François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 291
container_issue 4
container_start_page 280
container_title IET circuits, devices & systems
container_volume 10
creator Bourrasset, Cédric
Maggiani, Luca
Sérot, Jocelyn
Berry, François
description Embedded computer vision based smart systems raise challenging issues in many research fields, including real-time vision processing, communication protocols or distributed algorithms. The amount of data generated by cameras using high resolution image sensors requires powerful computing systems to be processed at digital video frame rates. Consequently, the design of efficient and flexible smart cameras, with on-board processing capabilities, has become a key issue for the expansion of smart vision systems relying on decentralised processing at the image sensor node level. In this context, field programmable gate arrays (FPGA)-based platforms, supporting massive data parallelism, offer large opportunities to match real-time processing constraints compared with platforms based on general purpose processors. In this study, the authors describe the implementation, on such a platform, of a configurable object detection application, reformulated according to the dataflow model of computation. The application relies on the computation of the histogram of oriented gradients and a linear SVM-based classification. It is described using the CAPH programming language, allowing efficient hardware descriptions to be generated automatically from high level dataflow specifications without prior knowledge of hardware description languages such as VHDL or Verilog. Results show that the performance of the generated code does not suffer from a significant overhead compared with handwritten HDL code.
doi_str_mv 10.1049/iet-cds.2015.0071
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835659731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835659731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5067-ec1b3a442039a9116f4da37a1b4a2f7573a8c2da3526fc99330aa869ed174e793</originalsourceid><addsrcrecordid>eNqFkNFLwzAQxoMoOKd_gG8FX_ShM5c0TSO-zOlUGCg4wbdwS1Ps6JbZdMr-e1MqQ0T06Y7j99199xFyDHQANFHnpW1ik_sBoyAGlErYIT2QAuJMqGx322cv--TA-zmlQgie9sjlNTZYVO4jcrO5NU2U2yaU0i0jv_GNXUSFq6Px4-0wnqG3eeQXWDeRwYWt8ZDsFVh5e_RV--R5fDMd3cWTh9v70XASG0FTGVsDM45JwihXqADSIsmRS4RZgqyQQnLMDAsjwdLCKMU5RcxSZXOQiZWK98lZt_cVK72qy2Bhox2W-m440e2MAlOpENk7BPa0Y1e1e1tb3-hF6Y2tKlxat_YaMi5SoSRv0ZMf6Nyt62X4RHOqGJMiWAkUdJSpnfe1LbYOgOo2ex2y1yF73Wav2-yD5qLTfJSV3fwv0KPrJ3Y1phSCsT6JO3GLbR39dezsF_7-Ztpu_XZjlRf8Eyl_o84</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092275933</pqid></control><display><type>article</type><title>Dataflow object detection system for FPGA-based smart camera</title><source>Wiley-Blackwell Open Access Titles</source><creator>Bourrasset, Cédric ; Maggiani, Luca ; Sérot, Jocelyn ; Berry, François</creator><creatorcontrib>Bourrasset, Cédric ; Maggiani, Luca ; Sérot, Jocelyn ; Berry, François</creatorcontrib><description>Embedded computer vision based smart systems raise challenging issues in many research fields, including real-time vision processing, communication protocols or distributed algorithms. The amount of data generated by cameras using high resolution image sensors requires powerful computing systems to be processed at digital video frame rates. Consequently, the design of efficient and flexible smart cameras, with on-board processing capabilities, has become a key issue for the expansion of smart vision systems relying on decentralised processing at the image sensor node level. In this context, field programmable gate arrays (FPGA)-based platforms, supporting massive data parallelism, offer large opportunities to match real-time processing constraints compared with platforms based on general purpose processors. In this study, the authors describe the implementation, on such a platform, of a configurable object detection application, reformulated according to the dataflow model of computation. The application relies on the computation of the histogram of oriented gradients and a linear SVM-based classification. It is described using the CAPH programming language, allowing efficient hardware descriptions to be generated automatically from high level dataflow specifications without prior knowledge of hardware description languages such as VHDL or Verilog. Results show that the performance of the generated code does not suffer from a significant overhead compared with handwritten HDL code.</description><identifier>ISSN: 1751-858X</identifier><identifier>ISSN: 1751-8598</identifier><identifier>EISSN: 1751-8598</identifier><identifier>DOI: 10.1049/iet-cds.2015.0071</identifier><language>eng</language><publisher>Stevenage: The Institution of Engineering and Technology</publisher><subject>Algorithms ; Cameras ; CAPH programming language ; Classification ; communication protocols ; Computation ; Computer Science ; Computer vision ; Computer Vision and Pattern Recognition ; configurable object detection ; data flow analysis ; dataflow object detection system ; Digital imaging ; digital video frame rates ; distributed algorithms ; Electronics ; embedded computer vision ; Engineering Sciences ; Field programmable gate arrays ; flexible smart cameras ; FPGA-based smart camera ; Frame design ; generated code ; Handwriting ; Hardware description languages ; hardware descriptions ; high level dataflow specifications ; high resolution image sensors ; Histograms ; Image resolution ; image sensors ; linear SVM-based classification ; massive data parallelism ; Mathematical models ; object detection ; Object recognition ; on-board processing ; oriented gradients ; Platforms ; Programming languages ; Real time ; real-time processing constraints ; real-time systems ; real-time vision processing ; Sensor arrays ; Sensors ; Smart sensors ; smart vision systems ; support vector machines ; Video communication ; Vision systems</subject><ispartof>IET circuits, devices &amp; systems, 2016-07, Vol.10 (4), p.280-291</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2016 The Institution of Engineering and Technology</rights><rights>Copyright The Institution of Engineering &amp; Technology 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5067-ec1b3a442039a9116f4da37a1b4a2f7573a8c2da3526fc99330aa869ed174e793</citedby><cites>FETCH-LOGICAL-c5067-ec1b3a442039a9116f4da37a1b4a2f7573a8c2da3526fc99330aa869ed174e793</cites><orcidid>0000-0001-6279-2013 ; 0000-0002-9217-9911 ; 0000-0002-5899-4672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-cds.2015.0071$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-cds.2015.0071$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,782,786,887,1419,11569,27931,27932,45581,45582,46059,46483</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-cds.2015.0071$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://hal.science/hal-01296558$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bourrasset, Cédric</creatorcontrib><creatorcontrib>Maggiani, Luca</creatorcontrib><creatorcontrib>Sérot, Jocelyn</creatorcontrib><creatorcontrib>Berry, François</creatorcontrib><title>Dataflow object detection system for FPGA-based smart camera</title><title>IET circuits, devices &amp; systems</title><description>Embedded computer vision based smart systems raise challenging issues in many research fields, including real-time vision processing, communication protocols or distributed algorithms. The amount of data generated by cameras using high resolution image sensors requires powerful computing systems to be processed at digital video frame rates. Consequently, the design of efficient and flexible smart cameras, with on-board processing capabilities, has become a key issue for the expansion of smart vision systems relying on decentralised processing at the image sensor node level. In this context, field programmable gate arrays (FPGA)-based platforms, supporting massive data parallelism, offer large opportunities to match real-time processing constraints compared with platforms based on general purpose processors. In this study, the authors describe the implementation, on such a platform, of a configurable object detection application, reformulated according to the dataflow model of computation. The application relies on the computation of the histogram of oriented gradients and a linear SVM-based classification. It is described using the CAPH programming language, allowing efficient hardware descriptions to be generated automatically from high level dataflow specifications without prior knowledge of hardware description languages such as VHDL or Verilog. Results show that the performance of the generated code does not suffer from a significant overhead compared with handwritten HDL code.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>CAPH programming language</subject><subject>Classification</subject><subject>communication protocols</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Computer Vision and Pattern Recognition</subject><subject>configurable object detection</subject><subject>data flow analysis</subject><subject>dataflow object detection system</subject><subject>Digital imaging</subject><subject>digital video frame rates</subject><subject>distributed algorithms</subject><subject>Electronics</subject><subject>embedded computer vision</subject><subject>Engineering Sciences</subject><subject>Field programmable gate arrays</subject><subject>flexible smart cameras</subject><subject>FPGA-based smart camera</subject><subject>Frame design</subject><subject>generated code</subject><subject>Handwriting</subject><subject>Hardware description languages</subject><subject>hardware descriptions</subject><subject>high level dataflow specifications</subject><subject>high resolution image sensors</subject><subject>Histograms</subject><subject>Image resolution</subject><subject>image sensors</subject><subject>linear SVM-based classification</subject><subject>massive data parallelism</subject><subject>Mathematical models</subject><subject>object detection</subject><subject>Object recognition</subject><subject>on-board processing</subject><subject>oriented gradients</subject><subject>Platforms</subject><subject>Programming languages</subject><subject>Real time</subject><subject>real-time processing constraints</subject><subject>real-time systems</subject><subject>real-time vision processing</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Smart sensors</subject><subject>smart vision systems</subject><subject>support vector machines</subject><subject>Video communication</subject><subject>Vision systems</subject><issn>1751-858X</issn><issn>1751-8598</issn><issn>1751-8598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkNFLwzAQxoMoOKd_gG8FX_ShM5c0TSO-zOlUGCg4wbdwS1Ps6JbZdMr-e1MqQ0T06Y7j99199xFyDHQANFHnpW1ik_sBoyAGlErYIT2QAuJMqGx322cv--TA-zmlQgie9sjlNTZYVO4jcrO5NU2U2yaU0i0jv_GNXUSFq6Px4-0wnqG3eeQXWDeRwYWt8ZDsFVh5e_RV--R5fDMd3cWTh9v70XASG0FTGVsDM45JwihXqADSIsmRS4RZgqyQQnLMDAsjwdLCKMU5RcxSZXOQiZWK98lZt_cVK72qy2Bhox2W-m440e2MAlOpENk7BPa0Y1e1e1tb3-hF6Y2tKlxat_YaMi5SoSRv0ZMf6Nyt62X4RHOqGJMiWAkUdJSpnfe1LbYOgOo2ex2y1yF73Wav2-yD5qLTfJSV3fwv0KPrJ3Y1phSCsT6JO3GLbR39dezsF_7-Ztpu_XZjlRf8Eyl_o84</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Bourrasset, Cédric</creator><creator>Maggiani, Luca</creator><creator>Sérot, Jocelyn</creator><creator>Berry, François</creator><general>The Institution of Engineering and Technology</general><general>John Wiley &amp; Sons, Inc</general><general>Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6279-2013</orcidid><orcidid>https://orcid.org/0000-0002-9217-9911</orcidid><orcidid>https://orcid.org/0000-0002-5899-4672</orcidid></search><sort><creationdate>201607</creationdate><title>Dataflow object detection system for FPGA-based smart camera</title><author>Bourrasset, Cédric ; Maggiani, Luca ; Sérot, Jocelyn ; Berry, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5067-ec1b3a442039a9116f4da37a1b4a2f7573a8c2da3526fc99330aa869ed174e793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>CAPH programming language</topic><topic>Classification</topic><topic>communication protocols</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Computer Vision and Pattern Recognition</topic><topic>configurable object detection</topic><topic>data flow analysis</topic><topic>dataflow object detection system</topic><topic>Digital imaging</topic><topic>digital video frame rates</topic><topic>distributed algorithms</topic><topic>Electronics</topic><topic>embedded computer vision</topic><topic>Engineering Sciences</topic><topic>Field programmable gate arrays</topic><topic>flexible smart cameras</topic><topic>FPGA-based smart camera</topic><topic>Frame design</topic><topic>generated code</topic><topic>Handwriting</topic><topic>Hardware description languages</topic><topic>hardware descriptions</topic><topic>high level dataflow specifications</topic><topic>high resolution image sensors</topic><topic>Histograms</topic><topic>Image resolution</topic><topic>image sensors</topic><topic>linear SVM-based classification</topic><topic>massive data parallelism</topic><topic>Mathematical models</topic><topic>object detection</topic><topic>Object recognition</topic><topic>on-board processing</topic><topic>oriented gradients</topic><topic>Platforms</topic><topic>Programming languages</topic><topic>Real time</topic><topic>real-time processing constraints</topic><topic>real-time systems</topic><topic>real-time vision processing</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Smart sensors</topic><topic>smart vision systems</topic><topic>support vector machines</topic><topic>Video communication</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourrasset, Cédric</creatorcontrib><creatorcontrib>Maggiani, Luca</creatorcontrib><creatorcontrib>Sérot, Jocelyn</creatorcontrib><creatorcontrib>Berry, François</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IET circuits, devices &amp; systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bourrasset, Cédric</au><au>Maggiani, Luca</au><au>Sérot, Jocelyn</au><au>Berry, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dataflow object detection system for FPGA-based smart camera</atitle><jtitle>IET circuits, devices &amp; systems</jtitle><date>2016-07</date><risdate>2016</risdate><volume>10</volume><issue>4</issue><spage>280</spage><epage>291</epage><pages>280-291</pages><issn>1751-858X</issn><issn>1751-8598</issn><eissn>1751-8598</eissn><abstract>Embedded computer vision based smart systems raise challenging issues in many research fields, including real-time vision processing, communication protocols or distributed algorithms. The amount of data generated by cameras using high resolution image sensors requires powerful computing systems to be processed at digital video frame rates. Consequently, the design of efficient and flexible smart cameras, with on-board processing capabilities, has become a key issue for the expansion of smart vision systems relying on decentralised processing at the image sensor node level. In this context, field programmable gate arrays (FPGA)-based platforms, supporting massive data parallelism, offer large opportunities to match real-time processing constraints compared with platforms based on general purpose processors. In this study, the authors describe the implementation, on such a platform, of a configurable object detection application, reformulated according to the dataflow model of computation. The application relies on the computation of the histogram of oriented gradients and a linear SVM-based classification. It is described using the CAPH programming language, allowing efficient hardware descriptions to be generated automatically from high level dataflow specifications without prior knowledge of hardware description languages such as VHDL or Verilog. Results show that the performance of the generated code does not suffer from a significant overhead compared with handwritten HDL code.</abstract><cop>Stevenage</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-cds.2015.0071</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6279-2013</orcidid><orcidid>https://orcid.org/0000-0002-9217-9911</orcidid><orcidid>https://orcid.org/0000-0002-5899-4672</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-858X
ispartof IET circuits, devices & systems, 2016-07, Vol.10 (4), p.280-291
issn 1751-858X
1751-8598
1751-8598
language eng
recordid cdi_proquest_miscellaneous_1835659731
source Wiley-Blackwell Open Access Titles
subjects Algorithms
Cameras
CAPH programming language
Classification
communication protocols
Computation
Computer Science
Computer vision
Computer Vision and Pattern Recognition
configurable object detection
data flow analysis
dataflow object detection system
Digital imaging
digital video frame rates
distributed algorithms
Electronics
embedded computer vision
Engineering Sciences
Field programmable gate arrays
flexible smart cameras
FPGA-based smart camera
Frame design
generated code
Handwriting
Hardware description languages
hardware descriptions
high level dataflow specifications
high resolution image sensors
Histograms
Image resolution
image sensors
linear SVM-based classification
massive data parallelism
Mathematical models
object detection
Object recognition
on-board processing
oriented gradients
Platforms
Programming languages
Real time
real-time processing constraints
real-time systems
real-time vision processing
Sensor arrays
Sensors
Smart sensors
smart vision systems
support vector machines
Video communication
Vision systems
title Dataflow object detection system for FPGA-based smart camera
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T05%3A38%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dataflow%20object%20detection%20system%20for%20FPGA-based%20smart%20camera&rft.jtitle=IET%20circuits,%20devices%20&%20systems&rft.au=Bourrasset,%20C%C3%A9dric&rft.date=2016-07&rft.volume=10&rft.issue=4&rft.spage=280&rft.epage=291&rft.pages=280-291&rft.issn=1751-858X&rft.eissn=1751-8598&rft_id=info:doi/10.1049/iet-cds.2015.0071&rft_dat=%3Cproquest_24P%3E1835659731%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092275933&rft_id=info:pmid/&rfr_iscdi=true