Dataflow object detection system for FPGA-based smart camera
Embedded computer vision based smart systems raise challenging issues in many research fields, including real-time vision processing, communication protocols or distributed algorithms. The amount of data generated by cameras using high resolution image sensors requires powerful computing systems to...
Gespeichert in:
Veröffentlicht in: | IET circuits, devices & systems devices & systems, 2016-07, Vol.10 (4), p.280-291 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 291 |
---|---|
container_issue | 4 |
container_start_page | 280 |
container_title | IET circuits, devices & systems |
container_volume | 10 |
creator | Bourrasset, Cédric Maggiani, Luca Sérot, Jocelyn Berry, François |
description | Embedded computer vision based smart systems raise challenging issues in many research fields, including real-time vision processing, communication protocols or distributed algorithms. The amount of data generated by cameras using high resolution image sensors requires powerful computing systems to be processed at digital video frame rates. Consequently, the design of efficient and flexible smart cameras, with on-board processing capabilities, has become a key issue for the expansion of smart vision systems relying on decentralised processing at the image sensor node level. In this context, field programmable gate arrays (FPGA)-based platforms, supporting massive data parallelism, offer large opportunities to match real-time processing constraints compared with platforms based on general purpose processors. In this study, the authors describe the implementation, on such a platform, of a configurable object detection application, reformulated according to the dataflow model of computation. The application relies on the computation of the histogram of oriented gradients and a linear SVM-based classification. It is described using the CAPH programming language, allowing efficient hardware descriptions to be generated automatically from high level dataflow specifications without prior knowledge of hardware description languages such as VHDL or Verilog. Results show that the performance of the generated code does not suffer from a significant overhead compared with handwritten HDL code. |
doi_str_mv | 10.1049/iet-cds.2015.0071 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835659731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835659731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5067-ec1b3a442039a9116f4da37a1b4a2f7573a8c2da3526fc99330aa869ed174e793</originalsourceid><addsrcrecordid>eNqFkNFLwzAQxoMoOKd_gG8FX_ShM5c0TSO-zOlUGCg4wbdwS1Ps6JbZdMr-e1MqQ0T06Y7j99199xFyDHQANFHnpW1ik_sBoyAGlErYIT2QAuJMqGx322cv--TA-zmlQgie9sjlNTZYVO4jcrO5NU2U2yaU0i0jv_GNXUSFq6Px4-0wnqG3eeQXWDeRwYWt8ZDsFVh5e_RV--R5fDMd3cWTh9v70XASG0FTGVsDM45JwihXqADSIsmRS4RZgqyQQnLMDAsjwdLCKMU5RcxSZXOQiZWK98lZt_cVK72qy2Bhox2W-m440e2MAlOpENk7BPa0Y1e1e1tb3-hF6Y2tKlxat_YaMi5SoSRv0ZMf6Nyt62X4RHOqGJMiWAkUdJSpnfe1LbYOgOo2ex2y1yF73Wav2-yD5qLTfJSV3fwv0KPrJ3Y1phSCsT6JO3GLbR39dezsF_7-Ztpu_XZjlRf8Eyl_o84</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3092275933</pqid></control><display><type>article</type><title>Dataflow object detection system for FPGA-based smart camera</title><source>Wiley-Blackwell Open Access Titles</source><creator>Bourrasset, Cédric ; Maggiani, Luca ; Sérot, Jocelyn ; Berry, François</creator><creatorcontrib>Bourrasset, Cédric ; Maggiani, Luca ; Sérot, Jocelyn ; Berry, François</creatorcontrib><description>Embedded computer vision based smart systems raise challenging issues in many research fields, including real-time vision processing, communication protocols or distributed algorithms. The amount of data generated by cameras using high resolution image sensors requires powerful computing systems to be processed at digital video frame rates. Consequently, the design of efficient and flexible smart cameras, with on-board processing capabilities, has become a key issue for the expansion of smart vision systems relying on decentralised processing at the image sensor node level. In this context, field programmable gate arrays (FPGA)-based platforms, supporting massive data parallelism, offer large opportunities to match real-time processing constraints compared with platforms based on general purpose processors. In this study, the authors describe the implementation, on such a platform, of a configurable object detection application, reformulated according to the dataflow model of computation. The application relies on the computation of the histogram of oriented gradients and a linear SVM-based classification. It is described using the CAPH programming language, allowing efficient hardware descriptions to be generated automatically from high level dataflow specifications without prior knowledge of hardware description languages such as VHDL or Verilog. Results show that the performance of the generated code does not suffer from a significant overhead compared with handwritten HDL code.</description><identifier>ISSN: 1751-858X</identifier><identifier>ISSN: 1751-8598</identifier><identifier>EISSN: 1751-8598</identifier><identifier>DOI: 10.1049/iet-cds.2015.0071</identifier><language>eng</language><publisher>Stevenage: The Institution of Engineering and Technology</publisher><subject>Algorithms ; Cameras ; CAPH programming language ; Classification ; communication protocols ; Computation ; Computer Science ; Computer vision ; Computer Vision and Pattern Recognition ; configurable object detection ; data flow analysis ; dataflow object detection system ; Digital imaging ; digital video frame rates ; distributed algorithms ; Electronics ; embedded computer vision ; Engineering Sciences ; Field programmable gate arrays ; flexible smart cameras ; FPGA-based smart camera ; Frame design ; generated code ; Handwriting ; Hardware description languages ; hardware descriptions ; high level dataflow specifications ; high resolution image sensors ; Histograms ; Image resolution ; image sensors ; linear SVM-based classification ; massive data parallelism ; Mathematical models ; object detection ; Object recognition ; on-board processing ; oriented gradients ; Platforms ; Programming languages ; Real time ; real-time processing constraints ; real-time systems ; real-time vision processing ; Sensor arrays ; Sensors ; Smart sensors ; smart vision systems ; support vector machines ; Video communication ; Vision systems</subject><ispartof>IET circuits, devices & systems, 2016-07, Vol.10 (4), p.280-291</ispartof><rights>The Institution of Engineering and Technology</rights><rights>2016 The Institution of Engineering and Technology</rights><rights>Copyright The Institution of Engineering & Technology 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5067-ec1b3a442039a9116f4da37a1b4a2f7573a8c2da3526fc99330aa869ed174e793</citedby><cites>FETCH-LOGICAL-c5067-ec1b3a442039a9116f4da37a1b4a2f7573a8c2da3526fc99330aa869ed174e793</cites><orcidid>0000-0001-6279-2013 ; 0000-0002-9217-9911 ; 0000-0002-5899-4672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1049%2Fiet-cds.2015.0071$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1049%2Fiet-cds.2015.0071$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,782,786,887,1419,11569,27931,27932,45581,45582,46059,46483</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-cds.2015.0071$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://hal.science/hal-01296558$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bourrasset, Cédric</creatorcontrib><creatorcontrib>Maggiani, Luca</creatorcontrib><creatorcontrib>Sérot, Jocelyn</creatorcontrib><creatorcontrib>Berry, François</creatorcontrib><title>Dataflow object detection system for FPGA-based smart camera</title><title>IET circuits, devices & systems</title><description>Embedded computer vision based smart systems raise challenging issues in many research fields, including real-time vision processing, communication protocols or distributed algorithms. The amount of data generated by cameras using high resolution image sensors requires powerful computing systems to be processed at digital video frame rates. Consequently, the design of efficient and flexible smart cameras, with on-board processing capabilities, has become a key issue for the expansion of smart vision systems relying on decentralised processing at the image sensor node level. In this context, field programmable gate arrays (FPGA)-based platforms, supporting massive data parallelism, offer large opportunities to match real-time processing constraints compared with platforms based on general purpose processors. In this study, the authors describe the implementation, on such a platform, of a configurable object detection application, reformulated according to the dataflow model of computation. The application relies on the computation of the histogram of oriented gradients and a linear SVM-based classification. It is described using the CAPH programming language, allowing efficient hardware descriptions to be generated automatically from high level dataflow specifications without prior knowledge of hardware description languages such as VHDL or Verilog. Results show that the performance of the generated code does not suffer from a significant overhead compared with handwritten HDL code.</description><subject>Algorithms</subject><subject>Cameras</subject><subject>CAPH programming language</subject><subject>Classification</subject><subject>communication protocols</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Computer Vision and Pattern Recognition</subject><subject>configurable object detection</subject><subject>data flow analysis</subject><subject>dataflow object detection system</subject><subject>Digital imaging</subject><subject>digital video frame rates</subject><subject>distributed algorithms</subject><subject>Electronics</subject><subject>embedded computer vision</subject><subject>Engineering Sciences</subject><subject>Field programmable gate arrays</subject><subject>flexible smart cameras</subject><subject>FPGA-based smart camera</subject><subject>Frame design</subject><subject>generated code</subject><subject>Handwriting</subject><subject>Hardware description languages</subject><subject>hardware descriptions</subject><subject>high level dataflow specifications</subject><subject>high resolution image sensors</subject><subject>Histograms</subject><subject>Image resolution</subject><subject>image sensors</subject><subject>linear SVM-based classification</subject><subject>massive data parallelism</subject><subject>Mathematical models</subject><subject>object detection</subject><subject>Object recognition</subject><subject>on-board processing</subject><subject>oriented gradients</subject><subject>Platforms</subject><subject>Programming languages</subject><subject>Real time</subject><subject>real-time processing constraints</subject><subject>real-time systems</subject><subject>real-time vision processing</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Smart sensors</subject><subject>smart vision systems</subject><subject>support vector machines</subject><subject>Video communication</subject><subject>Vision systems</subject><issn>1751-858X</issn><issn>1751-8598</issn><issn>1751-8598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkNFLwzAQxoMoOKd_gG8FX_ShM5c0TSO-zOlUGCg4wbdwS1Ps6JbZdMr-e1MqQ0T06Y7j99199xFyDHQANFHnpW1ik_sBoyAGlErYIT2QAuJMqGx322cv--TA-zmlQgie9sjlNTZYVO4jcrO5NU2U2yaU0i0jv_GNXUSFq6Px4-0wnqG3eeQXWDeRwYWt8ZDsFVh5e_RV--R5fDMd3cWTh9v70XASG0FTGVsDM45JwihXqADSIsmRS4RZgqyQQnLMDAsjwdLCKMU5RcxSZXOQiZWK98lZt_cVK72qy2Bhox2W-m440e2MAlOpENk7BPa0Y1e1e1tb3-hF6Y2tKlxat_YaMi5SoSRv0ZMf6Nyt62X4RHOqGJMiWAkUdJSpnfe1LbYOgOo2ex2y1yF73Wav2-yD5qLTfJSV3fwv0KPrJ3Y1phSCsT6JO3GLbR39dezsF_7-Ztpu_XZjlRf8Eyl_o84</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>Bourrasset, Cédric</creator><creator>Maggiani, Luca</creator><creator>Sérot, Jocelyn</creator><creator>Berry, François</creator><general>The Institution of Engineering and Technology</general><general>John Wiley & Sons, Inc</general><general>Institution of Engineering and Technology</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6279-2013</orcidid><orcidid>https://orcid.org/0000-0002-9217-9911</orcidid><orcidid>https://orcid.org/0000-0002-5899-4672</orcidid></search><sort><creationdate>201607</creationdate><title>Dataflow object detection system for FPGA-based smart camera</title><author>Bourrasset, Cédric ; Maggiani, Luca ; Sérot, Jocelyn ; Berry, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5067-ec1b3a442039a9116f4da37a1b4a2f7573a8c2da3526fc99330aa869ed174e793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>CAPH programming language</topic><topic>Classification</topic><topic>communication protocols</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Computer Vision and Pattern Recognition</topic><topic>configurable object detection</topic><topic>data flow analysis</topic><topic>dataflow object detection system</topic><topic>Digital imaging</topic><topic>digital video frame rates</topic><topic>distributed algorithms</topic><topic>Electronics</topic><topic>embedded computer vision</topic><topic>Engineering Sciences</topic><topic>Field programmable gate arrays</topic><topic>flexible smart cameras</topic><topic>FPGA-based smart camera</topic><topic>Frame design</topic><topic>generated code</topic><topic>Handwriting</topic><topic>Hardware description languages</topic><topic>hardware descriptions</topic><topic>high level dataflow specifications</topic><topic>high resolution image sensors</topic><topic>Histograms</topic><topic>Image resolution</topic><topic>image sensors</topic><topic>linear SVM-based classification</topic><topic>massive data parallelism</topic><topic>Mathematical models</topic><topic>object detection</topic><topic>Object recognition</topic><topic>on-board processing</topic><topic>oriented gradients</topic><topic>Platforms</topic><topic>Programming languages</topic><topic>Real time</topic><topic>real-time processing constraints</topic><topic>real-time systems</topic><topic>real-time vision processing</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Smart sensors</topic><topic>smart vision systems</topic><topic>support vector machines</topic><topic>Video communication</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourrasset, Cédric</creatorcontrib><creatorcontrib>Maggiani, Luca</creatorcontrib><creatorcontrib>Sérot, Jocelyn</creatorcontrib><creatorcontrib>Berry, François</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IET circuits, devices & systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bourrasset, Cédric</au><au>Maggiani, Luca</au><au>Sérot, Jocelyn</au><au>Berry, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dataflow object detection system for FPGA-based smart camera</atitle><jtitle>IET circuits, devices & systems</jtitle><date>2016-07</date><risdate>2016</risdate><volume>10</volume><issue>4</issue><spage>280</spage><epage>291</epage><pages>280-291</pages><issn>1751-858X</issn><issn>1751-8598</issn><eissn>1751-8598</eissn><abstract>Embedded computer vision based smart systems raise challenging issues in many research fields, including real-time vision processing, communication protocols or distributed algorithms. The amount of data generated by cameras using high resolution image sensors requires powerful computing systems to be processed at digital video frame rates. Consequently, the design of efficient and flexible smart cameras, with on-board processing capabilities, has become a key issue for the expansion of smart vision systems relying on decentralised processing at the image sensor node level. In this context, field programmable gate arrays (FPGA)-based platforms, supporting massive data parallelism, offer large opportunities to match real-time processing constraints compared with platforms based on general purpose processors. In this study, the authors describe the implementation, on such a platform, of a configurable object detection application, reformulated according to the dataflow model of computation. The application relies on the computation of the histogram of oriented gradients and a linear SVM-based classification. It is described using the CAPH programming language, allowing efficient hardware descriptions to be generated automatically from high level dataflow specifications without prior knowledge of hardware description languages such as VHDL or Verilog. Results show that the performance of the generated code does not suffer from a significant overhead compared with handwritten HDL code.</abstract><cop>Stevenage</cop><pub>The Institution of Engineering and Technology</pub><doi>10.1049/iet-cds.2015.0071</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6279-2013</orcidid><orcidid>https://orcid.org/0000-0002-9217-9911</orcidid><orcidid>https://orcid.org/0000-0002-5899-4672</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1751-858X |
ispartof | IET circuits, devices & systems, 2016-07, Vol.10 (4), p.280-291 |
issn | 1751-858X 1751-8598 1751-8598 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835659731 |
source | Wiley-Blackwell Open Access Titles |
subjects | Algorithms Cameras CAPH programming language Classification communication protocols Computation Computer Science Computer vision Computer Vision and Pattern Recognition configurable object detection data flow analysis dataflow object detection system Digital imaging digital video frame rates distributed algorithms Electronics embedded computer vision Engineering Sciences Field programmable gate arrays flexible smart cameras FPGA-based smart camera Frame design generated code Handwriting Hardware description languages hardware descriptions high level dataflow specifications high resolution image sensors Histograms Image resolution image sensors linear SVM-based classification massive data parallelism Mathematical models object detection Object recognition on-board processing oriented gradients Platforms Programming languages Real time real-time processing constraints real-time systems real-time vision processing Sensor arrays Sensors Smart sensors smart vision systems support vector machines Video communication Vision systems |
title | Dataflow object detection system for FPGA-based smart camera |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T05%3A38%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dataflow%20object%20detection%20system%20for%20FPGA-based%20smart%20camera&rft.jtitle=IET%20circuits,%20devices%20&%20systems&rft.au=Bourrasset,%20C%C3%A9dric&rft.date=2016-07&rft.volume=10&rft.issue=4&rft.spage=280&rft.epage=291&rft.pages=280-291&rft.issn=1751-858X&rft.eissn=1751-8598&rft_id=info:doi/10.1049/iet-cds.2015.0071&rft_dat=%3Cproquest_24P%3E1835659731%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3092275933&rft_id=info:pmid/&rfr_iscdi=true |