Deep Network Based on Stacked Orthogonal Convex Incremental ELM Autoencoders
Extreme learning machine (ELM) as an emerging technology has recently attracted many researchers’ interest due to its fast learning speed and state-of-the-art generalization ability in the implementation. Meanwhile, the incremental extreme learning machine (I-ELM) based on incremental learning algor...
Gespeichert in:
Veröffentlicht in: | Mathematical Problems in Engineering 2016-01, Vol.2016 (2016), p.883-899 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 899 |
---|---|
container_issue | 2016 |
container_start_page | 883 |
container_title | Mathematical Problems in Engineering |
container_volume | 2016 |
creator | Wang, Chao Gu, Shusheng Wang, Jianhui |
description | Extreme learning machine (ELM) as an emerging technology has recently attracted many researchers’ interest due to its fast learning speed and state-of-the-art generalization ability in the implementation. Meanwhile, the incremental extreme learning machine (I-ELM) based on incremental learning algorithm was proposed which outperforms many popular learning algorithms. However, the incremental algorithms with ELM do not recalculate the output weights of all the existing nodes when a new node is added and cannot obtain the least-squares solution of output weight vectors. In this paper, we propose orthogonal convex incremental learning machine (OCI-ELM) with Gram-Schmidt orthogonalization method and Barron’s convex optimization learning method to solve the nonconvex optimization problem and least-squares solution problem, and then we give the rigorous proofs in theory. Moreover, in this paper, we propose a deep architecture based on stacked OCI-ELM autoencoders according to stacked generalization philosophy for solving large and complex data problems. The experimental results verified with both UCI datasets and large datasets demonstrate that the deep network based on stacked OCI-ELM autoencoders (DOC-IELM-AEs) outperforms the other methods mentioned in the paper with better performance on regression and classification problems. |
doi_str_mv | 10.1155/2016/1649486 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835655931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20161117002_201612_201711200011_201711200011_883_899</airiti_id><sourcerecordid>4112870781</sourcerecordid><originalsourceid>FETCH-LOGICAL-a532t-1c40d75318732d5eca4933ad96d201c3b6d5347b0737cd201157c965fdcd3e303</originalsourceid><addsrcrecordid>eNqF0UtP3DAQAOAIFQkK3DijSL1UghRPJn7kCFtokVIWCZC4RcaeZbPsxoudLfDv65CVEL3gy4xHn0aecZLsA_sBwPlxzkAcgyjKQomNZBu4wIxDIb_EnOVFBjnebSVfQ5gxlgMHtZ1UP4mW6SV1z84_pqc6kE1dm1532jzGdOy7qXtwrZ6nI9f-pZf0ojWeFtR2sXRW_UlPVp2j1jhLPuwmmxM9D7S3jjvJ7fnZzeh3Vo1_XYxOqkxzzLsMTMGs5AhKYm45GV2UiNqWwsYJDN4Ly7GQ90yiNH0JuDSl4BNrLBIy3Em-D32X3j2tKHT1ogmG5nPdkluFGhRywXmJEOm3_-jMrXycp1csFyVXqm94NCjjXQieJvXSNwvtX2tgdb_aul9tvV5t5IcDnzat1c_NZ_pg0BQNTfS7jkeKHlQD0I1vuub9hVd9nx7F73rrCW9BAuSMxbV8vCiFtSpL_AfXZJRB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1802695880</pqid></control><display><type>article</type><title>Deep Network Based on Stacked Orthogonal Convex Incremental ELM Autoencoders</title><source>Wiley-Blackwell Open Access Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Chao ; Gu, Shusheng ; Wang, Jianhui</creator><contributor>Senhadji, Lotfi</contributor><creatorcontrib>Wang, Chao ; Gu, Shusheng ; Wang, Jianhui ; Senhadji, Lotfi</creatorcontrib><description>Extreme learning machine (ELM) as an emerging technology has recently attracted many researchers’ interest due to its fast learning speed and state-of-the-art generalization ability in the implementation. Meanwhile, the incremental extreme learning machine (I-ELM) based on incremental learning algorithm was proposed which outperforms many popular learning algorithms. However, the incremental algorithms with ELM do not recalculate the output weights of all the existing nodes when a new node is added and cannot obtain the least-squares solution of output weight vectors. In this paper, we propose orthogonal convex incremental learning machine (OCI-ELM) with Gram-Schmidt orthogonalization method and Barron’s convex optimization learning method to solve the nonconvex optimization problem and least-squares solution problem, and then we give the rigorous proofs in theory. Moreover, in this paper, we propose a deep architecture based on stacked OCI-ELM autoencoders according to stacked generalization philosophy for solving large and complex data problems. The experimental results verified with both UCI datasets and large datasets demonstrate that the deep network based on stacked OCI-ELM autoencoders (DOC-IELM-AEs) outperforms the other methods mentioned in the paper with better performance on regression and classification problems.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2016/1649486</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Accuracy ; Algorithms ; Architectural engineering ; Artificial neural networks ; Convexity ; Datasets ; Engineering ; Learning ; Least squares ; Least squares method ; Machine learning ; Mathematical analysis ; Networks ; Neural networks ; Optimization ; Regression</subject><ispartof>Mathematical Problems in Engineering, 2016-01, Vol.2016 (2016), p.883-899</ispartof><rights>Copyright © 2016 Chao Wang et al.</rights><rights>Copyright © 2016 Chao Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a532t-1c40d75318732d5eca4933ad96d201c3b6d5347b0737cd201157c965fdcd3e303</citedby><cites>FETCH-LOGICAL-a532t-1c40d75318732d5eca4933ad96d201c3b6d5347b0737cd201157c965fdcd3e303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><contributor>Senhadji, Lotfi</contributor><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Gu, Shusheng</creatorcontrib><creatorcontrib>Wang, Jianhui</creatorcontrib><title>Deep Network Based on Stacked Orthogonal Convex Incremental ELM Autoencoders</title><title>Mathematical Problems in Engineering</title><description>Extreme learning machine (ELM) as an emerging technology has recently attracted many researchers’ interest due to its fast learning speed and state-of-the-art generalization ability in the implementation. Meanwhile, the incremental extreme learning machine (I-ELM) based on incremental learning algorithm was proposed which outperforms many popular learning algorithms. However, the incremental algorithms with ELM do not recalculate the output weights of all the existing nodes when a new node is added and cannot obtain the least-squares solution of output weight vectors. In this paper, we propose orthogonal convex incremental learning machine (OCI-ELM) with Gram-Schmidt orthogonalization method and Barron’s convex optimization learning method to solve the nonconvex optimization problem and least-squares solution problem, and then we give the rigorous proofs in theory. Moreover, in this paper, we propose a deep architecture based on stacked OCI-ELM autoencoders according to stacked generalization philosophy for solving large and complex data problems. The experimental results verified with both UCI datasets and large datasets demonstrate that the deep network based on stacked OCI-ELM autoencoders (DOC-IELM-AEs) outperforms the other methods mentioned in the paper with better performance on regression and classification problems.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Architectural engineering</subject><subject>Artificial neural networks</subject><subject>Convexity</subject><subject>Datasets</subject><subject>Engineering</subject><subject>Learning</subject><subject>Least squares</subject><subject>Least squares method</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Regression</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0UtP3DAQAOAIFQkK3DijSL1UghRPJn7kCFtokVIWCZC4RcaeZbPsxoudLfDv65CVEL3gy4xHn0aecZLsA_sBwPlxzkAcgyjKQomNZBu4wIxDIb_EnOVFBjnebSVfQ5gxlgMHtZ1UP4mW6SV1z84_pqc6kE1dm1532jzGdOy7qXtwrZ6nI9f-pZf0ojWeFtR2sXRW_UlPVp2j1jhLPuwmmxM9D7S3jjvJ7fnZzeh3Vo1_XYxOqkxzzLsMTMGs5AhKYm45GV2UiNqWwsYJDN4Ly7GQ90yiNH0JuDSl4BNrLBIy3Em-D32X3j2tKHT1ogmG5nPdkluFGhRywXmJEOm3_-jMrXycp1csFyVXqm94NCjjXQieJvXSNwvtX2tgdb_aul9tvV5t5IcDnzat1c_NZ_pg0BQNTfS7jkeKHlQD0I1vuub9hVd9nx7F73rrCW9BAuSMxbV8vCiFtSpL_AfXZJRB</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Wang, Chao</creator><creator>Gu, Shusheng</creator><creator>Wang, Jianhui</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160101</creationdate><title>Deep Network Based on Stacked Orthogonal Convex Incremental ELM Autoencoders</title><author>Wang, Chao ; Gu, Shusheng ; Wang, Jianhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a532t-1c40d75318732d5eca4933ad96d201c3b6d5347b0737cd201157c965fdcd3e303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Architectural engineering</topic><topic>Artificial neural networks</topic><topic>Convexity</topic><topic>Datasets</topic><topic>Engineering</topic><topic>Learning</topic><topic>Least squares</topic><topic>Least squares method</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Gu, Shusheng</creatorcontrib><creatorcontrib>Wang, Jianhui</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical Problems in Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chao</au><au>Gu, Shusheng</au><au>Wang, Jianhui</au><au>Senhadji, Lotfi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Network Based on Stacked Orthogonal Convex Incremental ELM Autoencoders</atitle><jtitle>Mathematical Problems in Engineering</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>883</spage><epage>899</epage><pages>883-899</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Extreme learning machine (ELM) as an emerging technology has recently attracted many researchers’ interest due to its fast learning speed and state-of-the-art generalization ability in the implementation. Meanwhile, the incremental extreme learning machine (I-ELM) based on incremental learning algorithm was proposed which outperforms many popular learning algorithms. However, the incremental algorithms with ELM do not recalculate the output weights of all the existing nodes when a new node is added and cannot obtain the least-squares solution of output weight vectors. In this paper, we propose orthogonal convex incremental learning machine (OCI-ELM) with Gram-Schmidt orthogonalization method and Barron’s convex optimization learning method to solve the nonconvex optimization problem and least-squares solution problem, and then we give the rigorous proofs in theory. Moreover, in this paper, we propose a deep architecture based on stacked OCI-ELM autoencoders according to stacked generalization philosophy for solving large and complex data problems. The experimental results verified with both UCI datasets and large datasets demonstrate that the deep network based on stacked OCI-ELM autoencoders (DOC-IELM-AEs) outperforms the other methods mentioned in the paper with better performance on regression and classification problems.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2016/1649486</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical Problems in Engineering, 2016-01, Vol.2016 (2016), p.883-899 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835655931 |
source | Wiley-Blackwell Open Access Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Accuracy Algorithms Architectural engineering Artificial neural networks Convexity Datasets Engineering Learning Least squares Least squares method Machine learning Mathematical analysis Networks Neural networks Optimization Regression |
title | Deep Network Based on Stacked Orthogonal Convex Incremental ELM Autoencoders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Network%20Based%20on%20Stacked%20Orthogonal%20Convex%20Incremental%20ELM%20Autoencoders&rft.jtitle=Mathematical%20Problems%20in%20Engineering&rft.au=Wang,%20Chao&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=883&rft.epage=899&rft.pages=883-899&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2016/1649486&rft_dat=%3Cproquest_cross%3E4112870781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1802695880&rft_id=info:pmid/&rft_airiti_id=P20161117002_201612_201711200011_201711200011_883_899&rfr_iscdi=true |