Quantifying workspace and forces of surgical dissection during robot-assisted neurosurgery

Background A prerequisite for successful robot‐assisted neurosurgery is to use a hand‐controller matched with characteristics of real robotic microsurgery. This study reports quantified data pertaining to the required workspace and exerted forces of surgical tools during robot‐assisted microsurgery....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The international journal of medical robotics + computer assisted surgery 2016-09, Vol.12 (3), p.528-537
Hauptverfasser: Maddahi, Yaser, Gan, Liu Shi, Zareinia, Kourosh, Lama, Sanju, Sepehri, Nariman, Sutherland, Garnette R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 537
container_issue 3
container_start_page 528
container_title The international journal of medical robotics + computer assisted surgery
container_volume 12
creator Maddahi, Yaser
Gan, Liu Shi
Zareinia, Kourosh
Lama, Sanju
Sepehri, Nariman
Sutherland, Garnette R.
description Background A prerequisite for successful robot‐assisted neurosurgery is to use a hand‐controller matched with characteristics of real robotic microsurgery. This study reports quantified data pertaining to the required workspace and exerted forces of surgical tools during robot‐assisted microsurgery. Methods A surgeon conducted four operations in which the neuroArm surgical system, an image‐guided computer‐assisted manipulator specifically designed to perform robot‐assisted neurosurgery, was employed to surgically remove brain tumors. The position, orientation, and exerted force of surgical tools were measured during operations. Results Workspace of the neuroArm manipulators, for the cases studied, was 60×60×60 mm3 while it offered orientation ranges of 103°, 62° and 112°. The surgical tools exerted a maximum force of 1.86 N with frequency band of less than 20 Hz. Conclusions This data provides important information specific to neurosurgery that can be used to select among commercially available, or further design a customized, haptic hand‐controller for robot‐assisted neurosurgical systems. Copyright © 2015 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/rcs.1679
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835653441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4170301451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5909-b8db93c619f2899f9f35d290dec03c7861caab1ccb65cccd00aaec84f2316cf63</originalsourceid><addsrcrecordid>eNqN0ctq3DAUBmARWpI0DfQJiqGbbJzqWJZsLcPkVgi59JbQjZCPpKDEY00km3TevjaZDCUQyOpo8emHc35CPgHdB0qLrxHTPohKbpBtKKs651LcvFu_OWyRDyndUVryUpSbZKsQABKAbpM_V4Pueu-WvrvNHkO8TwuNNtOdyVyIaFMWXJaGeOtRt5nxKVnsfegyM8TpSwxN6HOdkk-9NVlnhxgmbuPyI3nvdJvs7mrukF_HRz9np_nZxcm32cFZjlxSmTe1aSRDAdIVtZROOsZNIamxSBlWtQDUugHERnBENJRqbbEuXcFAoBNsh-w95S5ieBhs6tXcJ7RtqzsbhqSgZlxwVpbwBgoV5UUli5F-eUHvwhC7cZFJCS4Kzv4LxHHtFK1Ti-jnOi4VUDVVo8Zq1FTNSD-vAodmbs0aPncxgvwJPPrWLl8NUt9nP1aBKz-d_u_a63ivRMUqrq7PT9Tl-e_ylB9eKcH-AVEVqCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816562531</pqid></control><display><type>article</type><title>Quantifying workspace and forces of surgical dissection during robot-assisted neurosurgery</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Maddahi, Yaser ; Gan, Liu Shi ; Zareinia, Kourosh ; Lama, Sanju ; Sepehri, Nariman ; Sutherland, Garnette R.</creator><creatorcontrib>Maddahi, Yaser ; Gan, Liu Shi ; Zareinia, Kourosh ; Lama, Sanju ; Sepehri, Nariman ; Sutherland, Garnette R.</creatorcontrib><description>Background A prerequisite for successful robot‐assisted neurosurgery is to use a hand‐controller matched with characteristics of real robotic microsurgery. This study reports quantified data pertaining to the required workspace and exerted forces of surgical tools during robot‐assisted microsurgery. Methods A surgeon conducted four operations in which the neuroArm surgical system, an image‐guided computer‐assisted manipulator specifically designed to perform robot‐assisted neurosurgery, was employed to surgically remove brain tumors. The position, orientation, and exerted force of surgical tools were measured during operations. Results Workspace of the neuroArm manipulators, for the cases studied, was 60×60×60 mm3 while it offered orientation ranges of 103°, 62° and 112°. The surgical tools exerted a maximum force of 1.86 N with frequency band of less than 20 Hz. Conclusions This data provides important information specific to neurosurgery that can be used to select among commercially available, or further design a customized, haptic hand‐controller for robot‐assisted neurosurgical systems. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1478-5951</identifier><identifier>EISSN: 1478-596X</identifier><identifier>DOI: 10.1002/rcs.1679</identifier><identifier>PMID: 26119110</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Customizing ; Dissection - methods ; fast Fourier transform ; force analysis ; hand-controller ; haptics ; Humans ; Manipulators ; neuroArm ; Neurosurgical Procedures - methods ; Orientation ; Position measurement ; Robot arms ; robot-assisted surgery ; Robotic Surgical Procedures - methods ; Robotics ; Surgeons ; Surgical instruments ; workspace</subject><ispartof>The international journal of medical robotics + computer assisted surgery, 2016-09, Vol.12 (3), p.528-537</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5909-b8db93c619f2899f9f35d290dec03c7861caab1ccb65cccd00aaec84f2316cf63</citedby><cites>FETCH-LOGICAL-c5909-b8db93c619f2899f9f35d290dec03c7861caab1ccb65cccd00aaec84f2316cf63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frcs.1679$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frcs.1679$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26119110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maddahi, Yaser</creatorcontrib><creatorcontrib>Gan, Liu Shi</creatorcontrib><creatorcontrib>Zareinia, Kourosh</creatorcontrib><creatorcontrib>Lama, Sanju</creatorcontrib><creatorcontrib>Sepehri, Nariman</creatorcontrib><creatorcontrib>Sutherland, Garnette R.</creatorcontrib><title>Quantifying workspace and forces of surgical dissection during robot-assisted neurosurgery</title><title>The international journal of medical robotics + computer assisted surgery</title><addtitle>Int J Med Robotics Comput Assist Surg</addtitle><description>Background A prerequisite for successful robot‐assisted neurosurgery is to use a hand‐controller matched with characteristics of real robotic microsurgery. This study reports quantified data pertaining to the required workspace and exerted forces of surgical tools during robot‐assisted microsurgery. Methods A surgeon conducted four operations in which the neuroArm surgical system, an image‐guided computer‐assisted manipulator specifically designed to perform robot‐assisted neurosurgery, was employed to surgically remove brain tumors. The position, orientation, and exerted force of surgical tools were measured during operations. Results Workspace of the neuroArm manipulators, for the cases studied, was 60×60×60 mm3 while it offered orientation ranges of 103°, 62° and 112°. The surgical tools exerted a maximum force of 1.86 N with frequency band of less than 20 Hz. Conclusions This data provides important information specific to neurosurgery that can be used to select among commercially available, or further design a customized, haptic hand‐controller for robot‐assisted neurosurgical systems. Copyright © 2015 John Wiley &amp; Sons, Ltd.</description><subject>Customizing</subject><subject>Dissection - methods</subject><subject>fast Fourier transform</subject><subject>force analysis</subject><subject>hand-controller</subject><subject>haptics</subject><subject>Humans</subject><subject>Manipulators</subject><subject>neuroArm</subject><subject>Neurosurgical Procedures - methods</subject><subject>Orientation</subject><subject>Position measurement</subject><subject>Robot arms</subject><subject>robot-assisted surgery</subject><subject>Robotic Surgical Procedures - methods</subject><subject>Robotics</subject><subject>Surgeons</subject><subject>Surgical instruments</subject><subject>workspace</subject><issn>1478-5951</issn><issn>1478-596X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0ctq3DAUBmARWpI0DfQJiqGbbJzqWJZsLcPkVgi59JbQjZCPpKDEY00km3TevjaZDCUQyOpo8emHc35CPgHdB0qLrxHTPohKbpBtKKs651LcvFu_OWyRDyndUVryUpSbZKsQABKAbpM_V4Pueu-WvrvNHkO8TwuNNtOdyVyIaFMWXJaGeOtRt5nxKVnsfegyM8TpSwxN6HOdkk-9NVlnhxgmbuPyI3nvdJvs7mrukF_HRz9np_nZxcm32cFZjlxSmTe1aSRDAdIVtZROOsZNIamxSBlWtQDUugHERnBENJRqbbEuXcFAoBNsh-w95S5ieBhs6tXcJ7RtqzsbhqSgZlxwVpbwBgoV5UUli5F-eUHvwhC7cZFJCS4Kzv4LxHHtFK1Ti-jnOi4VUDVVo8Zq1FTNSD-vAodmbs0aPncxgvwJPPrWLl8NUt9nP1aBKz-d_u_a63ivRMUqrq7PT9Tl-e_ylB9eKcH-AVEVqCs</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Maddahi, Yaser</creator><creator>Gan, Liu Shi</creator><creator>Zareinia, Kourosh</creator><creator>Lama, Sanju</creator><creator>Sepehri, Nariman</creator><creator>Sutherland, Garnette R.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201609</creationdate><title>Quantifying workspace and forces of surgical dissection during robot-assisted neurosurgery</title><author>Maddahi, Yaser ; Gan, Liu Shi ; Zareinia, Kourosh ; Lama, Sanju ; Sepehri, Nariman ; Sutherland, Garnette R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5909-b8db93c619f2899f9f35d290dec03c7861caab1ccb65cccd00aaec84f2316cf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Customizing</topic><topic>Dissection - methods</topic><topic>fast Fourier transform</topic><topic>force analysis</topic><topic>hand-controller</topic><topic>haptics</topic><topic>Humans</topic><topic>Manipulators</topic><topic>neuroArm</topic><topic>Neurosurgical Procedures - methods</topic><topic>Orientation</topic><topic>Position measurement</topic><topic>Robot arms</topic><topic>robot-assisted surgery</topic><topic>Robotic Surgical Procedures - methods</topic><topic>Robotics</topic><topic>Surgeons</topic><topic>Surgical instruments</topic><topic>workspace</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maddahi, Yaser</creatorcontrib><creatorcontrib>Gan, Liu Shi</creatorcontrib><creatorcontrib>Zareinia, Kourosh</creatorcontrib><creatorcontrib>Lama, Sanju</creatorcontrib><creatorcontrib>Sepehri, Nariman</creatorcontrib><creatorcontrib>Sutherland, Garnette R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>The international journal of medical robotics + computer assisted surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maddahi, Yaser</au><au>Gan, Liu Shi</au><au>Zareinia, Kourosh</au><au>Lama, Sanju</au><au>Sepehri, Nariman</au><au>Sutherland, Garnette R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying workspace and forces of surgical dissection during robot-assisted neurosurgery</atitle><jtitle>The international journal of medical robotics + computer assisted surgery</jtitle><addtitle>Int J Med Robotics Comput Assist Surg</addtitle><date>2016-09</date><risdate>2016</risdate><volume>12</volume><issue>3</issue><spage>528</spage><epage>537</epage><pages>528-537</pages><issn>1478-5951</issn><eissn>1478-596X</eissn><abstract>Background A prerequisite for successful robot‐assisted neurosurgery is to use a hand‐controller matched with characteristics of real robotic microsurgery. This study reports quantified data pertaining to the required workspace and exerted forces of surgical tools during robot‐assisted microsurgery. Methods A surgeon conducted four operations in which the neuroArm surgical system, an image‐guided computer‐assisted manipulator specifically designed to perform robot‐assisted neurosurgery, was employed to surgically remove brain tumors. The position, orientation, and exerted force of surgical tools were measured during operations. Results Workspace of the neuroArm manipulators, for the cases studied, was 60×60×60 mm3 while it offered orientation ranges of 103°, 62° and 112°. The surgical tools exerted a maximum force of 1.86 N with frequency band of less than 20 Hz. Conclusions This data provides important information specific to neurosurgery that can be used to select among commercially available, or further design a customized, haptic hand‐controller for robot‐assisted neurosurgical systems. Copyright © 2015 John Wiley &amp; Sons, Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>26119110</pmid><doi>10.1002/rcs.1679</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1478-5951
ispartof The international journal of medical robotics + computer assisted surgery, 2016-09, Vol.12 (3), p.528-537
issn 1478-5951
1478-596X
language eng
recordid cdi_proquest_miscellaneous_1835653441
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects Customizing
Dissection - methods
fast Fourier transform
force analysis
hand-controller
haptics
Humans
Manipulators
neuroArm
Neurosurgical Procedures - methods
Orientation
Position measurement
Robot arms
robot-assisted surgery
Robotic Surgical Procedures - methods
Robotics
Surgeons
Surgical instruments
workspace
title Quantifying workspace and forces of surgical dissection during robot-assisted neurosurgery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20workspace%20and%20forces%20of%20surgical%20dissection%20during%20robot-assisted%20neurosurgery&rft.jtitle=The%20international%20journal%20of%20medical%20robotics%20+%20computer%20assisted%20surgery&rft.au=Maddahi,%20Yaser&rft.date=2016-09&rft.volume=12&rft.issue=3&rft.spage=528&rft.epage=537&rft.pages=528-537&rft.issn=1478-5951&rft.eissn=1478-596X&rft_id=info:doi/10.1002/rcs.1679&rft_dat=%3Cproquest_cross%3E4170301451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816562531&rft_id=info:pmid/26119110&rfr_iscdi=true