Quantifying workspace and forces of surgical dissection during robot-assisted neurosurgery
Background A prerequisite for successful robot‐assisted neurosurgery is to use a hand‐controller matched with characteristics of real robotic microsurgery. This study reports quantified data pertaining to the required workspace and exerted forces of surgical tools during robot‐assisted microsurgery....
Gespeichert in:
Veröffentlicht in: | The international journal of medical robotics + computer assisted surgery 2016-09, Vol.12 (3), p.528-537 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 537 |
---|---|
container_issue | 3 |
container_start_page | 528 |
container_title | The international journal of medical robotics + computer assisted surgery |
container_volume | 12 |
creator | Maddahi, Yaser Gan, Liu Shi Zareinia, Kourosh Lama, Sanju Sepehri, Nariman Sutherland, Garnette R. |
description | Background
A prerequisite for successful robot‐assisted neurosurgery is to use a hand‐controller matched with characteristics of real robotic microsurgery. This study reports quantified data pertaining to the required workspace and exerted forces of surgical tools during robot‐assisted microsurgery.
Methods
A surgeon conducted four operations in which the neuroArm surgical system, an image‐guided computer‐assisted manipulator specifically designed to perform robot‐assisted neurosurgery, was employed to surgically remove brain tumors. The position, orientation, and exerted force of surgical tools were measured during operations.
Results
Workspace of the neuroArm manipulators, for the cases studied, was 60×60×60 mm3 while it offered orientation ranges of 103°, 62° and 112°. The surgical tools exerted a maximum force of 1.86 N with frequency band of less than 20 Hz.
Conclusions
This data provides important information specific to neurosurgery that can be used to select among commercially available, or further design a customized, haptic hand‐controller for robot‐assisted neurosurgical systems. Copyright © 2015 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/rcs.1679 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835653441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4170301451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5909-b8db93c619f2899f9f35d290dec03c7861caab1ccb65cccd00aaec84f2316cf63</originalsourceid><addsrcrecordid>eNqN0ctq3DAUBmARWpI0DfQJiqGbbJzqWJZsLcPkVgi59JbQjZCPpKDEY00km3TevjaZDCUQyOpo8emHc35CPgHdB0qLrxHTPohKbpBtKKs651LcvFu_OWyRDyndUVryUpSbZKsQABKAbpM_V4Pueu-WvrvNHkO8TwuNNtOdyVyIaFMWXJaGeOtRt5nxKVnsfegyM8TpSwxN6HOdkk-9NVlnhxgmbuPyI3nvdJvs7mrukF_HRz9np_nZxcm32cFZjlxSmTe1aSRDAdIVtZROOsZNIamxSBlWtQDUugHERnBENJRqbbEuXcFAoBNsh-w95S5ieBhs6tXcJ7RtqzsbhqSgZlxwVpbwBgoV5UUli5F-eUHvwhC7cZFJCS4Kzv4LxHHtFK1Ti-jnOi4VUDVVo8Zq1FTNSD-vAodmbs0aPncxgvwJPPrWLl8NUt9nP1aBKz-d_u_a63ivRMUqrq7PT9Tl-e_ylB9eKcH-AVEVqCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816562531</pqid></control><display><type>article</type><title>Quantifying workspace and forces of surgical dissection during robot-assisted neurosurgery</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Maddahi, Yaser ; Gan, Liu Shi ; Zareinia, Kourosh ; Lama, Sanju ; Sepehri, Nariman ; Sutherland, Garnette R.</creator><creatorcontrib>Maddahi, Yaser ; Gan, Liu Shi ; Zareinia, Kourosh ; Lama, Sanju ; Sepehri, Nariman ; Sutherland, Garnette R.</creatorcontrib><description>Background
A prerequisite for successful robot‐assisted neurosurgery is to use a hand‐controller matched with characteristics of real robotic microsurgery. This study reports quantified data pertaining to the required workspace and exerted forces of surgical tools during robot‐assisted microsurgery.
Methods
A surgeon conducted four operations in which the neuroArm surgical system, an image‐guided computer‐assisted manipulator specifically designed to perform robot‐assisted neurosurgery, was employed to surgically remove brain tumors. The position, orientation, and exerted force of surgical tools were measured during operations.
Results
Workspace of the neuroArm manipulators, for the cases studied, was 60×60×60 mm3 while it offered orientation ranges of 103°, 62° and 112°. The surgical tools exerted a maximum force of 1.86 N with frequency band of less than 20 Hz.
Conclusions
This data provides important information specific to neurosurgery that can be used to select among commercially available, or further design a customized, haptic hand‐controller for robot‐assisted neurosurgical systems. Copyright © 2015 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1478-5951</identifier><identifier>EISSN: 1478-596X</identifier><identifier>DOI: 10.1002/rcs.1679</identifier><identifier>PMID: 26119110</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Customizing ; Dissection - methods ; fast Fourier transform ; force analysis ; hand-controller ; haptics ; Humans ; Manipulators ; neuroArm ; Neurosurgical Procedures - methods ; Orientation ; Position measurement ; Robot arms ; robot-assisted surgery ; Robotic Surgical Procedures - methods ; Robotics ; Surgeons ; Surgical instruments ; workspace</subject><ispartof>The international journal of medical robotics + computer assisted surgery, 2016-09, Vol.12 (3), p.528-537</ispartof><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5909-b8db93c619f2899f9f35d290dec03c7861caab1ccb65cccd00aaec84f2316cf63</citedby><cites>FETCH-LOGICAL-c5909-b8db93c619f2899f9f35d290dec03c7861caab1ccb65cccd00aaec84f2316cf63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frcs.1679$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frcs.1679$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26119110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maddahi, Yaser</creatorcontrib><creatorcontrib>Gan, Liu Shi</creatorcontrib><creatorcontrib>Zareinia, Kourosh</creatorcontrib><creatorcontrib>Lama, Sanju</creatorcontrib><creatorcontrib>Sepehri, Nariman</creatorcontrib><creatorcontrib>Sutherland, Garnette R.</creatorcontrib><title>Quantifying workspace and forces of surgical dissection during robot-assisted neurosurgery</title><title>The international journal of medical robotics + computer assisted surgery</title><addtitle>Int J Med Robotics Comput Assist Surg</addtitle><description>Background
A prerequisite for successful robot‐assisted neurosurgery is to use a hand‐controller matched with characteristics of real robotic microsurgery. This study reports quantified data pertaining to the required workspace and exerted forces of surgical tools during robot‐assisted microsurgery.
Methods
A surgeon conducted four operations in which the neuroArm surgical system, an image‐guided computer‐assisted manipulator specifically designed to perform robot‐assisted neurosurgery, was employed to surgically remove brain tumors. The position, orientation, and exerted force of surgical tools were measured during operations.
Results
Workspace of the neuroArm manipulators, for the cases studied, was 60×60×60 mm3 while it offered orientation ranges of 103°, 62° and 112°. The surgical tools exerted a maximum force of 1.86 N with frequency band of less than 20 Hz.
Conclusions
This data provides important information specific to neurosurgery that can be used to select among commercially available, or further design a customized, haptic hand‐controller for robot‐assisted neurosurgical systems. Copyright © 2015 John Wiley & Sons, Ltd.</description><subject>Customizing</subject><subject>Dissection - methods</subject><subject>fast Fourier transform</subject><subject>force analysis</subject><subject>hand-controller</subject><subject>haptics</subject><subject>Humans</subject><subject>Manipulators</subject><subject>neuroArm</subject><subject>Neurosurgical Procedures - methods</subject><subject>Orientation</subject><subject>Position measurement</subject><subject>Robot arms</subject><subject>robot-assisted surgery</subject><subject>Robotic Surgical Procedures - methods</subject><subject>Robotics</subject><subject>Surgeons</subject><subject>Surgical instruments</subject><subject>workspace</subject><issn>1478-5951</issn><issn>1478-596X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0ctq3DAUBmARWpI0DfQJiqGbbJzqWJZsLcPkVgi59JbQjZCPpKDEY00km3TevjaZDCUQyOpo8emHc35CPgHdB0qLrxHTPohKbpBtKKs651LcvFu_OWyRDyndUVryUpSbZKsQABKAbpM_V4Pueu-WvrvNHkO8TwuNNtOdyVyIaFMWXJaGeOtRt5nxKVnsfegyM8TpSwxN6HOdkk-9NVlnhxgmbuPyI3nvdJvs7mrukF_HRz9np_nZxcm32cFZjlxSmTe1aSRDAdIVtZROOsZNIamxSBlWtQDUugHERnBENJRqbbEuXcFAoBNsh-w95S5ieBhs6tXcJ7RtqzsbhqSgZlxwVpbwBgoV5UUli5F-eUHvwhC7cZFJCS4Kzv4LxHHtFK1Ti-jnOi4VUDVVo8Zq1FTNSD-vAodmbs0aPncxgvwJPPrWLl8NUt9nP1aBKz-d_u_a63ivRMUqrq7PT9Tl-e_ylB9eKcH-AVEVqCs</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Maddahi, Yaser</creator><creator>Gan, Liu Shi</creator><creator>Zareinia, Kourosh</creator><creator>Lama, Sanju</creator><creator>Sepehri, Nariman</creator><creator>Sutherland, Garnette R.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201609</creationdate><title>Quantifying workspace and forces of surgical dissection during robot-assisted neurosurgery</title><author>Maddahi, Yaser ; Gan, Liu Shi ; Zareinia, Kourosh ; Lama, Sanju ; Sepehri, Nariman ; Sutherland, Garnette R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5909-b8db93c619f2899f9f35d290dec03c7861caab1ccb65cccd00aaec84f2316cf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Customizing</topic><topic>Dissection - methods</topic><topic>fast Fourier transform</topic><topic>force analysis</topic><topic>hand-controller</topic><topic>haptics</topic><topic>Humans</topic><topic>Manipulators</topic><topic>neuroArm</topic><topic>Neurosurgical Procedures - methods</topic><topic>Orientation</topic><topic>Position measurement</topic><topic>Robot arms</topic><topic>robot-assisted surgery</topic><topic>Robotic Surgical Procedures - methods</topic><topic>Robotics</topic><topic>Surgeons</topic><topic>Surgical instruments</topic><topic>workspace</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maddahi, Yaser</creatorcontrib><creatorcontrib>Gan, Liu Shi</creatorcontrib><creatorcontrib>Zareinia, Kourosh</creatorcontrib><creatorcontrib>Lama, Sanju</creatorcontrib><creatorcontrib>Sepehri, Nariman</creatorcontrib><creatorcontrib>Sutherland, Garnette R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>The international journal of medical robotics + computer assisted surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maddahi, Yaser</au><au>Gan, Liu Shi</au><au>Zareinia, Kourosh</au><au>Lama, Sanju</au><au>Sepehri, Nariman</au><au>Sutherland, Garnette R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying workspace and forces of surgical dissection during robot-assisted neurosurgery</atitle><jtitle>The international journal of medical robotics + computer assisted surgery</jtitle><addtitle>Int J Med Robotics Comput Assist Surg</addtitle><date>2016-09</date><risdate>2016</risdate><volume>12</volume><issue>3</issue><spage>528</spage><epage>537</epage><pages>528-537</pages><issn>1478-5951</issn><eissn>1478-596X</eissn><abstract>Background
A prerequisite for successful robot‐assisted neurosurgery is to use a hand‐controller matched with characteristics of real robotic microsurgery. This study reports quantified data pertaining to the required workspace and exerted forces of surgical tools during robot‐assisted microsurgery.
Methods
A surgeon conducted four operations in which the neuroArm surgical system, an image‐guided computer‐assisted manipulator specifically designed to perform robot‐assisted neurosurgery, was employed to surgically remove brain tumors. The position, orientation, and exerted force of surgical tools were measured during operations.
Results
Workspace of the neuroArm manipulators, for the cases studied, was 60×60×60 mm3 while it offered orientation ranges of 103°, 62° and 112°. The surgical tools exerted a maximum force of 1.86 N with frequency band of less than 20 Hz.
Conclusions
This data provides important information specific to neurosurgery that can be used to select among commercially available, or further design a customized, haptic hand‐controller for robot‐assisted neurosurgical systems. Copyright © 2015 John Wiley & Sons, Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>26119110</pmid><doi>10.1002/rcs.1679</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1478-5951 |
ispartof | The international journal of medical robotics + computer assisted surgery, 2016-09, Vol.12 (3), p.528-537 |
issn | 1478-5951 1478-596X |
language | eng |
recordid | cdi_proquest_miscellaneous_1835653441 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | Customizing Dissection - methods fast Fourier transform force analysis hand-controller haptics Humans Manipulators neuroArm Neurosurgical Procedures - methods Orientation Position measurement Robot arms robot-assisted surgery Robotic Surgical Procedures - methods Robotics Surgeons Surgical instruments workspace |
title | Quantifying workspace and forces of surgical dissection during robot-assisted neurosurgery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20workspace%20and%20forces%20of%20surgical%20dissection%20during%20robot-assisted%20neurosurgery&rft.jtitle=The%20international%20journal%20of%20medical%20robotics%20+%20computer%20assisted%20surgery&rft.au=Maddahi,%20Yaser&rft.date=2016-09&rft.volume=12&rft.issue=3&rft.spage=528&rft.epage=537&rft.pages=528-537&rft.issn=1478-5951&rft.eissn=1478-596X&rft_id=info:doi/10.1002/rcs.1679&rft_dat=%3Cproquest_cross%3E4170301451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816562531&rft_id=info:pmid/26119110&rfr_iscdi=true |