Vortex formation in coalescence of droplets with a reservoir using molecular dynamics simulations

[Display omitted] The flow patterns generated by the coalescence of aqueous ethanol droplets with a water reservoir are investigated using molecular dynamics simulations. The influence of surface tension gradient, which leads to the spreading of the droplet along the liquid-vapor interface of the re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2016-10, Vol.479, p.189-198
Hauptverfasser: Taherian, Fereshte, Marcon, Valentina, Bonaccurso, Elmar, van der Vegt, Nico F.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 198
container_issue
container_start_page 189
container_title Journal of colloid and interface science
container_volume 479
creator Taherian, Fereshte
Marcon, Valentina
Bonaccurso, Elmar
van der Vegt, Nico F.A.
description [Display omitted] The flow patterns generated by the coalescence of aqueous ethanol droplets with a water reservoir are investigated using molecular dynamics simulations. The influence of surface tension gradient, which leads to the spreading of the droplet along the liquid-vapor interface of the reservoir, is studied by changing the ethanol concentration of the droplet. The internal circulation (vortex strength) of the droplet and the reservoir are analyzed separately. Simulation results reveal the formation of swirling flows within the droplet at early times when the radius of the coalescence neck due to the capillary forces increases rapidly with time. The vortex strength is found to be higher at lower concentrations of ethanol (higher liquid-vapor surface tension of the droplet), where the driving force for the contact line movement (capillary force) is stronger. The circulation diminishes by moving the center of mass of the droplet toward the reservoir. The lower surface tension of the droplet compared to the reservoir leads to surface tension gradient driven flow, which transports the droplet molecules along the liquid-vapor interface of the reservoir. Such a flow motion results in the generation of convective flows in the underlying water, which forms swirling flows within the reservoir. Therefore, the vortex strength of the reservoir is higher at higher ethanol concentrations of the droplet. The reservoir circulation decays to zero as soon as the ethanol concentration becomes homogeneous along the interface of the pool. The time evolution of circulation within the droplet and the reservoir are correlated with the center of mass motion of the droplet toward the surface, the time variation of the precursor film radius and the dynamic surface tension of the reservoir.
doi_str_mv 10.1016/j.jcis.2016.06.059
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835651762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979716304246</els_id><sourcerecordid>1803790546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-7f0111b66eb410eae3a2410cc2ff2dd4b617dc93c82acb97e7735652e116ab1a3</originalsourceid><addsrcrecordid>eNqNkU9rGzEQxUVpqR0nXyCHoGMv62gkr2RBLsU0f8CQS9ur0GpnW5ndlSPtOvG3rxYnOZbAwAzDbx7Se4RcAlsCA3m9W-6cT0ue5yXLVepPZA5Ml4UCJj6TOWMcCq20mpGzlHaMAZSl_kpmXIn1GoSYE_s7xAFfaBNiZwcfeup76oJtMTnsHdLQ0DqGfYtDos9--EstjZgwHoKPdEy-_0O70KIbWxtpfext512iyXd5Memlc_KlsW3Ci9e-IL9uf_zc3Bfbx7uHzfdt4VZcDoVq8uugkhKrFTC0KCzPg3O8aXhdryoJqnZauDW3rtIKlRKlLDkCSFuBFQvy7aS7j-FpxDSYzuc_tK3tMYzJwHriQUn-AZQJpVm5khnlJ9TFkFLExuyj72w8GmBmSsHszJSCmVIwLFep89HVq_5YdVi_n7zZnoGbE4DZkIPHaJLzk921j-gGUwf_P_1_vBmaOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1803790546</pqid></control><display><type>article</type><title>Vortex formation in coalescence of droplets with a reservoir using molecular dynamics simulations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Taherian, Fereshte ; Marcon, Valentina ; Bonaccurso, Elmar ; van der Vegt, Nico F.A.</creator><creatorcontrib>Taherian, Fereshte ; Marcon, Valentina ; Bonaccurso, Elmar ; van der Vegt, Nico F.A.</creatorcontrib><description>[Display omitted] The flow patterns generated by the coalescence of aqueous ethanol droplets with a water reservoir are investigated using molecular dynamics simulations. The influence of surface tension gradient, which leads to the spreading of the droplet along the liquid-vapor interface of the reservoir, is studied by changing the ethanol concentration of the droplet. The internal circulation (vortex strength) of the droplet and the reservoir are analyzed separately. Simulation results reveal the formation of swirling flows within the droplet at early times when the radius of the coalescence neck due to the capillary forces increases rapidly with time. The vortex strength is found to be higher at lower concentrations of ethanol (higher liquid-vapor surface tension of the droplet), where the driving force for the contact line movement (capillary force) is stronger. The circulation diminishes by moving the center of mass of the droplet toward the reservoir. The lower surface tension of the droplet compared to the reservoir leads to surface tension gradient driven flow, which transports the droplet molecules along the liquid-vapor interface of the reservoir. Such a flow motion results in the generation of convective flows in the underlying water, which forms swirling flows within the reservoir. Therefore, the vortex strength of the reservoir is higher at higher ethanol concentrations of the droplet. The reservoir circulation decays to zero as soon as the ethanol concentration becomes homogeneous along the interface of the pool. The time evolution of circulation within the droplet and the reservoir are correlated with the center of mass motion of the droplet toward the surface, the time variation of the precursor film radius and the dynamic surface tension of the reservoir.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2016.06.059</identifier><identifier>PMID: 27388133</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Circulation ; Coalescence ; Droplets ; Ethanol ; Ethyl alcohol ; Fluid dynamics ; Fluid flow ; Molecular simulation ; Reservoirs ; Surface tension ; Vortex formation ; Wetting</subject><ispartof>Journal of colloid and interface science, 2016-10, Vol.479, p.189-198</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-7f0111b66eb410eae3a2410cc2ff2dd4b617dc93c82acb97e7735652e116ab1a3</citedby><cites>FETCH-LOGICAL-c426t-7f0111b66eb410eae3a2410cc2ff2dd4b617dc93c82acb97e7735652e116ab1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2016.06.059$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27388133$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taherian, Fereshte</creatorcontrib><creatorcontrib>Marcon, Valentina</creatorcontrib><creatorcontrib>Bonaccurso, Elmar</creatorcontrib><creatorcontrib>van der Vegt, Nico F.A.</creatorcontrib><title>Vortex formation in coalescence of droplets with a reservoir using molecular dynamics simulations</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted] The flow patterns generated by the coalescence of aqueous ethanol droplets with a water reservoir are investigated using molecular dynamics simulations. The influence of surface tension gradient, which leads to the spreading of the droplet along the liquid-vapor interface of the reservoir, is studied by changing the ethanol concentration of the droplet. The internal circulation (vortex strength) of the droplet and the reservoir are analyzed separately. Simulation results reveal the formation of swirling flows within the droplet at early times when the radius of the coalescence neck due to the capillary forces increases rapidly with time. The vortex strength is found to be higher at lower concentrations of ethanol (higher liquid-vapor surface tension of the droplet), where the driving force for the contact line movement (capillary force) is stronger. The circulation diminishes by moving the center of mass of the droplet toward the reservoir. The lower surface tension of the droplet compared to the reservoir leads to surface tension gradient driven flow, which transports the droplet molecules along the liquid-vapor interface of the reservoir. Such a flow motion results in the generation of convective flows in the underlying water, which forms swirling flows within the reservoir. Therefore, the vortex strength of the reservoir is higher at higher ethanol concentrations of the droplet. The reservoir circulation decays to zero as soon as the ethanol concentration becomes homogeneous along the interface of the pool. The time evolution of circulation within the droplet and the reservoir are correlated with the center of mass motion of the droplet toward the surface, the time variation of the precursor film radius and the dynamic surface tension of the reservoir.</description><subject>Circulation</subject><subject>Coalescence</subject><subject>Droplets</subject><subject>Ethanol</subject><subject>Ethyl alcohol</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Molecular simulation</subject><subject>Reservoirs</subject><subject>Surface tension</subject><subject>Vortex formation</subject><subject>Wetting</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU9rGzEQxUVpqR0nXyCHoGMv62gkr2RBLsU0f8CQS9ur0GpnW5ndlSPtOvG3rxYnOZbAwAzDbx7Se4RcAlsCA3m9W-6cT0ue5yXLVepPZA5Ml4UCJj6TOWMcCq20mpGzlHaMAZSl_kpmXIn1GoSYE_s7xAFfaBNiZwcfeup76oJtMTnsHdLQ0DqGfYtDos9--EstjZgwHoKPdEy-_0O70KIbWxtpfext512iyXd5Memlc_KlsW3Ci9e-IL9uf_zc3Bfbx7uHzfdt4VZcDoVq8uugkhKrFTC0KCzPg3O8aXhdryoJqnZauDW3rtIKlRKlLDkCSFuBFQvy7aS7j-FpxDSYzuc_tK3tMYzJwHriQUn-AZQJpVm5khnlJ9TFkFLExuyj72w8GmBmSsHszJSCmVIwLFep89HVq_5YdVi_n7zZnoGbE4DZkIPHaJLzk921j-gGUwf_P_1_vBmaOQ</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Taherian, Fereshte</creator><creator>Marcon, Valentina</creator><creator>Bonaccurso, Elmar</creator><creator>van der Vegt, Nico F.A.</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20161001</creationdate><title>Vortex formation in coalescence of droplets with a reservoir using molecular dynamics simulations</title><author>Taherian, Fereshte ; Marcon, Valentina ; Bonaccurso, Elmar ; van der Vegt, Nico F.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-7f0111b66eb410eae3a2410cc2ff2dd4b617dc93c82acb97e7735652e116ab1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Circulation</topic><topic>Coalescence</topic><topic>Droplets</topic><topic>Ethanol</topic><topic>Ethyl alcohol</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Molecular simulation</topic><topic>Reservoirs</topic><topic>Surface tension</topic><topic>Vortex formation</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taherian, Fereshte</creatorcontrib><creatorcontrib>Marcon, Valentina</creatorcontrib><creatorcontrib>Bonaccurso, Elmar</creatorcontrib><creatorcontrib>van der Vegt, Nico F.A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taherian, Fereshte</au><au>Marcon, Valentina</au><au>Bonaccurso, Elmar</au><au>van der Vegt, Nico F.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vortex formation in coalescence of droplets with a reservoir using molecular dynamics simulations</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2016-10-01</date><risdate>2016</risdate><volume>479</volume><spage>189</spage><epage>198</epage><pages>189-198</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] The flow patterns generated by the coalescence of aqueous ethanol droplets with a water reservoir are investigated using molecular dynamics simulations. The influence of surface tension gradient, which leads to the spreading of the droplet along the liquid-vapor interface of the reservoir, is studied by changing the ethanol concentration of the droplet. The internal circulation (vortex strength) of the droplet and the reservoir are analyzed separately. Simulation results reveal the formation of swirling flows within the droplet at early times when the radius of the coalescence neck due to the capillary forces increases rapidly with time. The vortex strength is found to be higher at lower concentrations of ethanol (higher liquid-vapor surface tension of the droplet), where the driving force for the contact line movement (capillary force) is stronger. The circulation diminishes by moving the center of mass of the droplet toward the reservoir. The lower surface tension of the droplet compared to the reservoir leads to surface tension gradient driven flow, which transports the droplet molecules along the liquid-vapor interface of the reservoir. Such a flow motion results in the generation of convective flows in the underlying water, which forms swirling flows within the reservoir. Therefore, the vortex strength of the reservoir is higher at higher ethanol concentrations of the droplet. The reservoir circulation decays to zero as soon as the ethanol concentration becomes homogeneous along the interface of the pool. The time evolution of circulation within the droplet and the reservoir are correlated with the center of mass motion of the droplet toward the surface, the time variation of the precursor film radius and the dynamic surface tension of the reservoir.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27388133</pmid><doi>10.1016/j.jcis.2016.06.059</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2016-10, Vol.479, p.189-198
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_1835651762
source Access via ScienceDirect (Elsevier)
subjects Circulation
Coalescence
Droplets
Ethanol
Ethyl alcohol
Fluid dynamics
Fluid flow
Molecular simulation
Reservoirs
Surface tension
Vortex formation
Wetting
title Vortex formation in coalescence of droplets with a reservoir using molecular dynamics simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T07%3A38%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vortex%20formation%20in%20coalescence%20of%20droplets%20with%20a%20reservoir%20using%20molecular%20dynamics%20simulations&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Taherian,%20Fereshte&rft.date=2016-10-01&rft.volume=479&rft.spage=189&rft.epage=198&rft.pages=189-198&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2016.06.059&rft_dat=%3Cproquest_cross%3E1803790546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1803790546&rft_id=info:pmid/27388133&rft_els_id=S0021979716304246&rfr_iscdi=true