EEG-based person identification through Binary Flower Pollination Algorithm

•A binary-constrained version of the Flower Pollination Algorithm has been proposed.•Sensor selection in EEG signals by means of optimization techniques.•To evaluate the proposed approach in the context of biometrics. Electroencephalogram (EEG) signal presents a great potential for highly secure bio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2016-11, Vol.62, p.81-90
Hauptverfasser: Rodrigues, Douglas, Silva, Gabriel F.A., Papa, João P., Marana, Aparecido N., Yang, Xin-She
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 90
container_issue
container_start_page 81
container_title Expert systems with applications
container_volume 62
creator Rodrigues, Douglas
Silva, Gabriel F.A.
Papa, João P.
Marana, Aparecido N.
Yang, Xin-She
description •A binary-constrained version of the Flower Pollination Algorithm has been proposed.•Sensor selection in EEG signals by means of optimization techniques.•To evaluate the proposed approach in the context of biometrics. Electroencephalogram (EEG) signal presents a great potential for highly secure biometric systems due to its characteristics of universality, uniqueness, and natural robustness to spoofing attacks. EEG signals are measured by sensors placed in various positions of a person’s head (channels). In this work, we address the problem of reducing the number of required sensors while maintaining a comparable performance. We evaluated a binary version of the Flower Pollination Algorithm under different transfer functions to select the best subset of channels that maximizes the accuracy, which is measured by means of the Optimum-Path Forest classifier. The experimental results show the proposed approach can make use of less than a half of the number of sensors while maintaining recognition rates up to 87%, which is crucial towards the effective use of EEG in biometric applications.
doi_str_mv 10.1016/j.eswa.2016.06.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835649261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417416302871</els_id><sourcerecordid>1835649261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-60ecc3a44996a408a440369d584d10df73bb27f7eab904dff977c6a92855de7e3</originalsourceid><addsrcrecordid>eNp9UMFKAzEUDKJgrf6Apz162fqym0024KWWtooFPeg5pMnbNmW7qcnW4t-bWs_CwJv3mHkwQ8gthREFyu83I4wHPSoSH0EC8DMyoLUocy5keU4GICuRMyrYJbmKcQNABYAYkJfpdJ4vdUSb7TBE32XOYte7xhndu7T26-D3q3X26DodvrNZ6w8Ysjfftunwqxi3Kx9cv95ek4tGtxFv_uaQfMym75OnfPE6f56MF7lhrOxzDmhMqRmTkmsGdWJQcmmrmlkKthHlclmIRqBeSmC2aaQQhmtZ1FVlUWA5JHenv7vgP_cYe7V10WDb6g79PipalxVnsuA0SYuT1AQfY8BG7YLbpiCKgjo2pzbq2Jw6NqcgAXgyPZxMmEJ8OQwqGoedQesCml5Z7_6z_wDgH3er</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835649261</pqid></control><display><type>article</type><title>EEG-based person identification through Binary Flower Pollination Algorithm</title><source>Elsevier ScienceDirect Journals</source><creator>Rodrigues, Douglas ; Silva, Gabriel F.A. ; Papa, João P. ; Marana, Aparecido N. ; Yang, Xin-She</creator><creatorcontrib>Rodrigues, Douglas ; Silva, Gabriel F.A. ; Papa, João P. ; Marana, Aparecido N. ; Yang, Xin-She</creatorcontrib><description>•A binary-constrained version of the Flower Pollination Algorithm has been proposed.•Sensor selection in EEG signals by means of optimization techniques.•To evaluate the proposed approach in the context of biometrics. Electroencephalogram (EEG) signal presents a great potential for highly secure biometric systems due to its characteristics of universality, uniqueness, and natural robustness to spoofing attacks. EEG signals are measured by sensors placed in various positions of a person’s head (channels). In this work, we address the problem of reducing the number of required sensors while maintaining a comparable performance. We evaluated a binary version of the Flower Pollination Algorithm under different transfer functions to select the best subset of channels that maximizes the accuracy, which is measured by means of the Optimum-Path Forest classifier. The experimental results show the proposed approach can make use of less than a half of the number of sensors while maintaining recognition rates up to 87%, which is crucial towards the effective use of EEG in biometric applications.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2016.06.006</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Biometrics ; Channels ; Electroencephalogram ; Electroencephalography ; Flowers ; Meta-heuristic ; Optimum-path forest ; Pattern classification ; Position measurement ; Robustness ; Sensors</subject><ispartof>Expert systems with applications, 2016-11, Vol.62, p.81-90</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-60ecc3a44996a408a440369d584d10df73bb27f7eab904dff977c6a92855de7e3</citedby><cites>FETCH-LOGICAL-c443t-60ecc3a44996a408a440369d584d10df73bb27f7eab904dff977c6a92855de7e3</cites><orcidid>0000-0002-6494-7514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0957417416302871$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Rodrigues, Douglas</creatorcontrib><creatorcontrib>Silva, Gabriel F.A.</creatorcontrib><creatorcontrib>Papa, João P.</creatorcontrib><creatorcontrib>Marana, Aparecido N.</creatorcontrib><creatorcontrib>Yang, Xin-She</creatorcontrib><title>EEG-based person identification through Binary Flower Pollination Algorithm</title><title>Expert systems with applications</title><description>•A binary-constrained version of the Flower Pollination Algorithm has been proposed.•Sensor selection in EEG signals by means of optimization techniques.•To evaluate the proposed approach in the context of biometrics. Electroencephalogram (EEG) signal presents a great potential for highly secure biometric systems due to its characteristics of universality, uniqueness, and natural robustness to spoofing attacks. EEG signals are measured by sensors placed in various positions of a person’s head (channels). In this work, we address the problem of reducing the number of required sensors while maintaining a comparable performance. We evaluated a binary version of the Flower Pollination Algorithm under different transfer functions to select the best subset of channels that maximizes the accuracy, which is measured by means of the Optimum-Path Forest classifier. The experimental results show the proposed approach can make use of less than a half of the number of sensors while maintaining recognition rates up to 87%, which is crucial towards the effective use of EEG in biometric applications.</description><subject>Algorithms</subject><subject>Biometrics</subject><subject>Channels</subject><subject>Electroencephalogram</subject><subject>Electroencephalography</subject><subject>Flowers</subject><subject>Meta-heuristic</subject><subject>Optimum-path forest</subject><subject>Pattern classification</subject><subject>Position measurement</subject><subject>Robustness</subject><subject>Sensors</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKAzEUDKJgrf6Apz162fqym0024KWWtooFPeg5pMnbNmW7qcnW4t-bWs_CwJv3mHkwQ8gthREFyu83I4wHPSoSH0EC8DMyoLUocy5keU4GICuRMyrYJbmKcQNABYAYkJfpdJ4vdUSb7TBE32XOYte7xhndu7T26-D3q3X26DodvrNZ6w8Ysjfftunwqxi3Kx9cv95ek4tGtxFv_uaQfMym75OnfPE6f56MF7lhrOxzDmhMqRmTkmsGdWJQcmmrmlkKthHlclmIRqBeSmC2aaQQhmtZ1FVlUWA5JHenv7vgP_cYe7V10WDb6g79PipalxVnsuA0SYuT1AQfY8BG7YLbpiCKgjo2pzbq2Jw6NqcgAXgyPZxMmEJ8OQwqGoedQesCml5Z7_6z_wDgH3er</recordid><startdate>20161115</startdate><enddate>20161115</enddate><creator>Rodrigues, Douglas</creator><creator>Silva, Gabriel F.A.</creator><creator>Papa, João P.</creator><creator>Marana, Aparecido N.</creator><creator>Yang, Xin-She</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6494-7514</orcidid></search><sort><creationdate>20161115</creationdate><title>EEG-based person identification through Binary Flower Pollination Algorithm</title><author>Rodrigues, Douglas ; Silva, Gabriel F.A. ; Papa, João P. ; Marana, Aparecido N. ; Yang, Xin-She</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-60ecc3a44996a408a440369d584d10df73bb27f7eab904dff977c6a92855de7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Biometrics</topic><topic>Channels</topic><topic>Electroencephalogram</topic><topic>Electroencephalography</topic><topic>Flowers</topic><topic>Meta-heuristic</topic><topic>Optimum-path forest</topic><topic>Pattern classification</topic><topic>Position measurement</topic><topic>Robustness</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues, Douglas</creatorcontrib><creatorcontrib>Silva, Gabriel F.A.</creatorcontrib><creatorcontrib>Papa, João P.</creatorcontrib><creatorcontrib>Marana, Aparecido N.</creatorcontrib><creatorcontrib>Yang, Xin-She</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues, Douglas</au><au>Silva, Gabriel F.A.</au><au>Papa, João P.</au><au>Marana, Aparecido N.</au><au>Yang, Xin-She</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EEG-based person identification through Binary Flower Pollination Algorithm</atitle><jtitle>Expert systems with applications</jtitle><date>2016-11-15</date><risdate>2016</risdate><volume>62</volume><spage>81</spage><epage>90</epage><pages>81-90</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•A binary-constrained version of the Flower Pollination Algorithm has been proposed.•Sensor selection in EEG signals by means of optimization techniques.•To evaluate the proposed approach in the context of biometrics. Electroencephalogram (EEG) signal presents a great potential for highly secure biometric systems due to its characteristics of universality, uniqueness, and natural robustness to spoofing attacks. EEG signals are measured by sensors placed in various positions of a person’s head (channels). In this work, we address the problem of reducing the number of required sensors while maintaining a comparable performance. We evaluated a binary version of the Flower Pollination Algorithm under different transfer functions to select the best subset of channels that maximizes the accuracy, which is measured by means of the Optimum-Path Forest classifier. The experimental results show the proposed approach can make use of less than a half of the number of sensors while maintaining recognition rates up to 87%, which is crucial towards the effective use of EEG in biometric applications.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2016.06.006</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6494-7514</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2016-11, Vol.62, p.81-90
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_1835649261
source Elsevier ScienceDirect Journals
subjects Algorithms
Biometrics
Channels
Electroencephalogram
Electroencephalography
Flowers
Meta-heuristic
Optimum-path forest
Pattern classification
Position measurement
Robustness
Sensors
title EEG-based person identification through Binary Flower Pollination Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A18%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EEG-based%20person%20identification%20through%20Binary%20Flower%20Pollination%20Algorithm&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Rodrigues,%20Douglas&rft.date=2016-11-15&rft.volume=62&rft.spage=81&rft.epage=90&rft.pages=81-90&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2016.06.006&rft_dat=%3Cproquest_cross%3E1835649261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835649261&rft_id=info:pmid/&rft_els_id=S0957417416302871&rfr_iscdi=true