EEG-based person identification through Binary Flower Pollination Algorithm
•A binary-constrained version of the Flower Pollination Algorithm has been proposed.•Sensor selection in EEG signals by means of optimization techniques.•To evaluate the proposed approach in the context of biometrics. Electroencephalogram (EEG) signal presents a great potential for highly secure bio...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2016-11, Vol.62, p.81-90 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 90 |
---|---|
container_issue | |
container_start_page | 81 |
container_title | Expert systems with applications |
container_volume | 62 |
creator | Rodrigues, Douglas Silva, Gabriel F.A. Papa, João P. Marana, Aparecido N. Yang, Xin-She |
description | •A binary-constrained version of the Flower Pollination Algorithm has been proposed.•Sensor selection in EEG signals by means of optimization techniques.•To evaluate the proposed approach in the context of biometrics.
Electroencephalogram (EEG) signal presents a great potential for highly secure biometric systems due to its characteristics of universality, uniqueness, and natural robustness to spoofing attacks. EEG signals are measured by sensors placed in various positions of a person’s head (channels). In this work, we address the problem of reducing the number of required sensors while maintaining a comparable performance. We evaluated a binary version of the Flower Pollination Algorithm under different transfer functions to select the best subset of channels that maximizes the accuracy, which is measured by means of the Optimum-Path Forest classifier. The experimental results show the proposed approach can make use of less than a half of the number of sensors while maintaining recognition rates up to 87%, which is crucial towards the effective use of EEG in biometric applications. |
doi_str_mv | 10.1016/j.eswa.2016.06.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1835649261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417416302871</els_id><sourcerecordid>1835649261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-60ecc3a44996a408a440369d584d10df73bb27f7eab904dff977c6a92855de7e3</originalsourceid><addsrcrecordid>eNp9UMFKAzEUDKJgrf6Apz162fqym0024KWWtooFPeg5pMnbNmW7qcnW4t-bWs_CwJv3mHkwQ8gthREFyu83I4wHPSoSH0EC8DMyoLUocy5keU4GICuRMyrYJbmKcQNABYAYkJfpdJ4vdUSb7TBE32XOYte7xhndu7T26-D3q3X26DodvrNZ6w8Ysjfftunwqxi3Kx9cv95ek4tGtxFv_uaQfMym75OnfPE6f56MF7lhrOxzDmhMqRmTkmsGdWJQcmmrmlkKthHlclmIRqBeSmC2aaQQhmtZ1FVlUWA5JHenv7vgP_cYe7V10WDb6g79PipalxVnsuA0SYuT1AQfY8BG7YLbpiCKgjo2pzbq2Jw6NqcgAXgyPZxMmEJ8OQwqGoedQesCml5Z7_6z_wDgH3er</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835649261</pqid></control><display><type>article</type><title>EEG-based person identification through Binary Flower Pollination Algorithm</title><source>Elsevier ScienceDirect Journals</source><creator>Rodrigues, Douglas ; Silva, Gabriel F.A. ; Papa, João P. ; Marana, Aparecido N. ; Yang, Xin-She</creator><creatorcontrib>Rodrigues, Douglas ; Silva, Gabriel F.A. ; Papa, João P. ; Marana, Aparecido N. ; Yang, Xin-She</creatorcontrib><description>•A binary-constrained version of the Flower Pollination Algorithm has been proposed.•Sensor selection in EEG signals by means of optimization techniques.•To evaluate the proposed approach in the context of biometrics.
Electroencephalogram (EEG) signal presents a great potential for highly secure biometric systems due to its characteristics of universality, uniqueness, and natural robustness to spoofing attacks. EEG signals are measured by sensors placed in various positions of a person’s head (channels). In this work, we address the problem of reducing the number of required sensors while maintaining a comparable performance. We evaluated a binary version of the Flower Pollination Algorithm under different transfer functions to select the best subset of channels that maximizes the accuracy, which is measured by means of the Optimum-Path Forest classifier. The experimental results show the proposed approach can make use of less than a half of the number of sensors while maintaining recognition rates up to 87%, which is crucial towards the effective use of EEG in biometric applications.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2016.06.006</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Biometrics ; Channels ; Electroencephalogram ; Electroencephalography ; Flowers ; Meta-heuristic ; Optimum-path forest ; Pattern classification ; Position measurement ; Robustness ; Sensors</subject><ispartof>Expert systems with applications, 2016-11, Vol.62, p.81-90</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-60ecc3a44996a408a440369d584d10df73bb27f7eab904dff977c6a92855de7e3</citedby><cites>FETCH-LOGICAL-c443t-60ecc3a44996a408a440369d584d10df73bb27f7eab904dff977c6a92855de7e3</cites><orcidid>0000-0002-6494-7514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0957417416302871$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Rodrigues, Douglas</creatorcontrib><creatorcontrib>Silva, Gabriel F.A.</creatorcontrib><creatorcontrib>Papa, João P.</creatorcontrib><creatorcontrib>Marana, Aparecido N.</creatorcontrib><creatorcontrib>Yang, Xin-She</creatorcontrib><title>EEG-based person identification through Binary Flower Pollination Algorithm</title><title>Expert systems with applications</title><description>•A binary-constrained version of the Flower Pollination Algorithm has been proposed.•Sensor selection in EEG signals by means of optimization techniques.•To evaluate the proposed approach in the context of biometrics.
Electroencephalogram (EEG) signal presents a great potential for highly secure biometric systems due to its characteristics of universality, uniqueness, and natural robustness to spoofing attacks. EEG signals are measured by sensors placed in various positions of a person’s head (channels). In this work, we address the problem of reducing the number of required sensors while maintaining a comparable performance. We evaluated a binary version of the Flower Pollination Algorithm under different transfer functions to select the best subset of channels that maximizes the accuracy, which is measured by means of the Optimum-Path Forest classifier. The experimental results show the proposed approach can make use of less than a half of the number of sensors while maintaining recognition rates up to 87%, which is crucial towards the effective use of EEG in biometric applications.</description><subject>Algorithms</subject><subject>Biometrics</subject><subject>Channels</subject><subject>Electroencephalogram</subject><subject>Electroencephalography</subject><subject>Flowers</subject><subject>Meta-heuristic</subject><subject>Optimum-path forest</subject><subject>Pattern classification</subject><subject>Position measurement</subject><subject>Robustness</subject><subject>Sensors</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKAzEUDKJgrf6Apz162fqym0024KWWtooFPeg5pMnbNmW7qcnW4t-bWs_CwJv3mHkwQ8gthREFyu83I4wHPSoSH0EC8DMyoLUocy5keU4GICuRMyrYJbmKcQNABYAYkJfpdJ4vdUSb7TBE32XOYte7xhndu7T26-D3q3X26DodvrNZ6w8Ysjfftunwqxi3Kx9cv95ek4tGtxFv_uaQfMym75OnfPE6f56MF7lhrOxzDmhMqRmTkmsGdWJQcmmrmlkKthHlclmIRqBeSmC2aaQQhmtZ1FVlUWA5JHenv7vgP_cYe7V10WDb6g79PipalxVnsuA0SYuT1AQfY8BG7YLbpiCKgjo2pzbq2Jw6NqcgAXgyPZxMmEJ8OQwqGoedQesCml5Z7_6z_wDgH3er</recordid><startdate>20161115</startdate><enddate>20161115</enddate><creator>Rodrigues, Douglas</creator><creator>Silva, Gabriel F.A.</creator><creator>Papa, João P.</creator><creator>Marana, Aparecido N.</creator><creator>Yang, Xin-She</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6494-7514</orcidid></search><sort><creationdate>20161115</creationdate><title>EEG-based person identification through Binary Flower Pollination Algorithm</title><author>Rodrigues, Douglas ; Silva, Gabriel F.A. ; Papa, João P. ; Marana, Aparecido N. ; Yang, Xin-She</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-60ecc3a44996a408a440369d584d10df73bb27f7eab904dff977c6a92855de7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Biometrics</topic><topic>Channels</topic><topic>Electroencephalogram</topic><topic>Electroencephalography</topic><topic>Flowers</topic><topic>Meta-heuristic</topic><topic>Optimum-path forest</topic><topic>Pattern classification</topic><topic>Position measurement</topic><topic>Robustness</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues, Douglas</creatorcontrib><creatorcontrib>Silva, Gabriel F.A.</creatorcontrib><creatorcontrib>Papa, João P.</creatorcontrib><creatorcontrib>Marana, Aparecido N.</creatorcontrib><creatorcontrib>Yang, Xin-She</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues, Douglas</au><au>Silva, Gabriel F.A.</au><au>Papa, João P.</au><au>Marana, Aparecido N.</au><au>Yang, Xin-She</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EEG-based person identification through Binary Flower Pollination Algorithm</atitle><jtitle>Expert systems with applications</jtitle><date>2016-11-15</date><risdate>2016</risdate><volume>62</volume><spage>81</spage><epage>90</epage><pages>81-90</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•A binary-constrained version of the Flower Pollination Algorithm has been proposed.•Sensor selection in EEG signals by means of optimization techniques.•To evaluate the proposed approach in the context of biometrics.
Electroencephalogram (EEG) signal presents a great potential for highly secure biometric systems due to its characteristics of universality, uniqueness, and natural robustness to spoofing attacks. EEG signals are measured by sensors placed in various positions of a person’s head (channels). In this work, we address the problem of reducing the number of required sensors while maintaining a comparable performance. We evaluated a binary version of the Flower Pollination Algorithm under different transfer functions to select the best subset of channels that maximizes the accuracy, which is measured by means of the Optimum-Path Forest classifier. The experimental results show the proposed approach can make use of less than a half of the number of sensors while maintaining recognition rates up to 87%, which is crucial towards the effective use of EEG in biometric applications.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2016.06.006</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6494-7514</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2016-11, Vol.62, p.81-90 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_miscellaneous_1835649261 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Biometrics Channels Electroencephalogram Electroencephalography Flowers Meta-heuristic Optimum-path forest Pattern classification Position measurement Robustness Sensors |
title | EEG-based person identification through Binary Flower Pollination Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A18%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EEG-based%20person%20identification%20through%20Binary%20Flower%20Pollination%20Algorithm&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Rodrigues,%20Douglas&rft.date=2016-11-15&rft.volume=62&rft.spage=81&rft.epage=90&rft.pages=81-90&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2016.06.006&rft_dat=%3Cproquest_cross%3E1835649261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835649261&rft_id=info:pmid/&rft_els_id=S0957417416302871&rfr_iscdi=true |